Land-Use and Land-Cover Changes and Their Effects on Carbon and Water Cycling in Northern Eurasia and the Arctic

Qianlai Zhuang Department of Earth, Atmospheric, and Planetary Sciences

Project Participants and Coauthors

David Kicklighter, Marine Biological Laboratory, Woods Hole, MA; dkicklighter@mbl.edu

Yongxia Cai, Massachusetts Institute of Technology, Cambridge, MA caiyx@mit.edu

Nadejda Tchebakova: V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia, <u>ncheby@ksc.krasn.ru</u>

Elena Parfenova, V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia, lyeti@ksc.krasn.ru

Jerry Melillo: Marine Biological Laboratory, Woods Hole, MA; jmelillo@mbl.edu

John Reilly: Massachusetts Institute of Technology, Cambridge, MA; jreilly@mit.edu

Sergey Paltsev, Massachusetts Institute of Technology, Cambridge, MApaltsev@mit.edu

Andrei Sokolov, Massachusetts Institute of Technology, Cambridge, MAssachusetts Institute of Tec

Anatoly Shvidenko: International Institute of Applied Systems Analysis, Laxenburg, Austria; shvidenk@iiasa.ac.at

Anna Peregon: CEA Centre de Saclay, Laboratoire des Science Du Climat et de l'Environnement, L'Orme des Merisiers, Bat. 701/7 Point courrier 129, 91191 Gif-Sur-Yvette Cedex, France, <u>anna.Peregon@lsce.ipsl.fr</u>

Andrey Sirin: Institute of Forest Science, Russian Academy of Sciences; sirin@proc.ru

Shamil Maksyutov: National Institute for Environmental Studies, Tsukuba, Japan; shamil@nies.go.jp

Guangsheng Zhou, Institute of Botany, Chinese Academy of Sciences, gszhou@ibcas.ac.cn

Mikhail Glagolev, Moscow State University, Moscow, 119991, Russia

Annual global surface temperature anomalies, 2011

The largest and most extensive warming (indicated in shades of red) was concentrated in the Arctic. Source: NASA Goddard Institute for Space Studies.

Northern Eurasia

Research Questions

- How the land use and land cover in Northern Eurasia and the Pan-Arctic will be affected by the global natural and anthropogenic changes in this century?
- How the biogeochemical cycles of carbon and water will change in these regions during this century?

General Approach

(Melillo et al. 2009)

Major Features of EPPA and TEM

EPPA

- Multiple regions Globe divided into 16 economic regions
- Multiple fuels Fossil, Nuclear, Wind, Solar, Biomass, Biofuels
- Multiple sectors Industry, Transportation, Households, Agriculture, Forestry

TEM

- Cycling of carbon, nitrogen, and water
- Spatial information on soils, vegetation, climate, elevation, atmospheric chemistry (carbon dioxide, tropospheric ozone)
- Coupled with permafrost and fire dynamics

Soil Thermal Model

Major Features of SiBCliM

- A static envelope-type large-scale bioclimatic model based on the vegetation classification of Shumilova (1962)
- SiBCliM uses three bioclimatic indices: (1) growing degree-days above 5°C; (2) negative degree-days below 0°C; and (3) an annual moisture index (ratio of growing degree days above 5°C to annual precipitation)
- SiBCliM has been updated to include permafrost (the active layer depth)

Fire & Vegetation Shifts

New Vegetation	Old Vegetation Type										
Туре	Tundra	Needle-leaf	Needle-leaf	Needle-leaf	Needle-leaf	Boreal Birch	Temperate	Forest-Steppe	Forest-Steppe	Steppe	Semi-
		Evergreen	Deciduous	Evergreen	Deciduous	Subtaiga/	Mixed Forest	Boreal	Temperate	Boreal,	Desert/
		Forest-	Forest-	Taiga	Taiga	Temperate				Temperate	Desert
		Tundra	Tundra			Broadleaf					
Tundra	No Change	Fire	Fire	Fire	Fire	Fire	Fire	Fire	Fire	Fire	Succession
Needle-leaf											
Evergreen	Succession	No Change	Succession	Fire	Fire	Fire	Fire	Succession	Succession	Succession	Succession
Forest-Tundra											
Needle-leaf											
Deciduous	Succession	Fire	No Change	Fire	Fire	Fire	Fire	Succession	Succession	Succession	Succession
Forest-Tundra											
Needle-leaf	Succession	Succession	Succession	No Change	Succession	Succession	Succession	Succession	Succession	Succession	Succession
Evergreen Taiga	Succession	Succession	Succession	No change	50000530011	50000051011	Succession	Succession	Succession	Succession	Succession
Needle-leaf	Succession	Fire	Succession	Fire	No Change	Fire	Fire	Succession	Succession	Succession	Succession
Deciduous Taiga	Succession	· ····c	Succession		no chunge	The state	The state	Succession	Succession	Succession	Succession
Boreal Birch											
Subtaiga/	Succession	Fire	Fire	Fire	Fire	No Change	Fire	Succession	Succession	Succession	Succession
Temperate											
Broadleaf											
Temperate	Succession	Succession	Succession	Fire	Fire	Succession	No Change	Succession	Succession	Succession	Succession
Mixed Forest											
Forest-Steppe	Fire	Fire	Fire	Fire	Fire	Fire	Fire	No Change	Succession	Succession	Succession
Boreal								0			
Forest-Steppe	Fire	Fire	Fire	Fire	Fire	Fire	Fire	Succession	No Change	Succession	Succession
Temperate									5		
Steppe Boreal,	Fire	Fire	Fire	Fire	Fire	Fire	Fire	Fire	Fire	No Change	Succession
Temperate										•	
Semi-Desert/	Fire	Fire	Fire	Fire	Fire	Fire	Fire	Fire	Fire	Fire	No Change
Desert											0-

Fire assumed to be associated with 62 vegetation transitions!

c) Global mean air temperature

b) AOT40 ozone index

d) Global mean precipitation

Shifts of Natural Vegetation in Northern Eurasia (2000-2100)

No Policy

Percent

Land-cover and Land-use Change in Northern Eurasia 2000-2100

Distribution of Land Carbon Gain/Loss in Northern Eurasia 2000-2100

kg C m⁻²

Net Land Carbon Fluxes in Northern Eurasia

No Policy

Distribution of Land Carbon Gain/Loss across Globe 2000-2100

Summary 1

- Climate-induced vegetation shifts in Northern Eurasia
 - Decreases area of tundra and boreal forests
 - Increases area of temperate forests and grasslands
- Impacts of vegetation shifts on global managed lands
 - Allows ~6% expansion of food crops and pastures with No Policy
 - Allows ~25% expansion of biofuels with Policy
- Impacts of vegetation shifts on global terrestrial carbon fluxes
 - Enhances carbon emissions from some areas and enhances carbon sequestration in other areas
 - Overall, decreases the terrestrial carbon sink by 72% or creates a carbon source in Northern Eurasia over the 21st century
 - Overall, decreases the global terrestrial carbon sink by 27-41%
 - Effect of wildfires on carbon budgets from vegetation shifts in Northern Eurasia has a large uncertainty

Methane Consumption and Emission Model

(Zhuang et al., 2004 GBC)

An Integrated Biogeochemistry Model

	Atmospheric	: Methane Co	(b)
	Diffusion	Plant- aided Emission	Ebullition
·	t		Soil / Water Surface
(Oxic Soi	1)		Upper boundary (z=0)
	Meth	nane Oxidatio	n
			Water Table
(Anoxic	Soil)		
	Meth	ane Producti	on
	Meth	iune i i ouuen	Lower Boundary (z=L _p)
l			, ч

(Zhuang et al., 2006)

Comparison between Simulations and Observation

(Tang and Zhuang et al., 2010)

CH₄ Emission and consumption during the 1990s

20-24 Tg CH₄ yr⁻¹

(Zhu and Zhuang et al., 2011)

Annual methane emission and consumption over Northern Eurasia during the 21st century

Comparison between Observed, Modeled and Satellite Evapotranspiration in Northern Eurasia

⁽Liu et al., 2013)

Simulated Evapotranspiration from the 1950s to 2000s in Northern Eurasia

Summary 2

- Current net methane emissions are 20-24 Tg per year
- Emissions are projected to increase by 6–51% under various wetland extent datasets and climate scenarios by the end of the 21st century, relative to present conditions
- Terrestrial ecosystems ET has decreased from the 1950s to 2000s in Northern Eurasian

Observational Sites of Methane Fluxes and Environmental Variables Used in Methane Modeling

Annual wetland CH₄ emissions during 1990-2009 Based on an Neural Network Approach

The delineation of the watersheds across the Pan-Arctic land region, derived from HYDRO1K dataset

Probability distribution of modeled (at a 5-km spatial resolution) (a) and observed (b) mean methane emissions during the growing season (May - Sep.) across West Siberian Lowlands

Annual net methane exchange (NME) (a), net ecosystem exchange (NEE) (b), and global warming potential (GWP) (c) over the pan-Arctic for the 21st century, under the nopolicy (dashed lines) and policy (solid lines) scenarios. Grey lines indicate the simulations without considering the S permafrost-thawing effect

Summary 3

- Large uncertainty in methane emission quantification is due to 1) uncertain wetland /peatland area information and 2) uncertain complex hydrological dynamics upon permafrost thawing
- Net methane emissions over the region significantly affect the total radiative forcing

Acknowledgement

- > NASA LCLUC Program
- > NSF Biocomplexity Program carbon and water
- DOE Abrupt Climate Change and SciDAC Programs

Distribution of Land use in Northern Eurasia during year 2000

Food Crops

Pasture

Managed Forests

Percent

Difference in Land Use due to Veg Shifts in Northern Eurasia 2000-2100

No Policy

Policy

Percent