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1. History of the models of "fish wars"

Levhari and Mirman (1980)

The biological growth rule is given by

xt+1 = (xt)
α , x0 = x ,

where xt ≥ 0 – size of the population, 0 < α < 1 – natural birth
rate.

Two players exploit the fish stock and the utility functions are
logarithmic. The players’ net revenue over infinite time horizon:

J̄i =
∞∑

t=0

βt
i ln(ui

t) ,

where ui
t ≥ 0 – players’ catch at time t, 0 < βi < 1 – the discount

factor for player i.



Our model with many players

The dynamics of the fishery is described by the equation

xt+1 = (εxt −
n∑

i=1

uit)
α , x0 = x ,

where xt ≥ 0 – size of population at a time t, ε ∈ (0,1) – natural
death rate, α ∈ (0,1) – natural birth rate, uit ≥ 0 – the catch of
player i, i = 1, . . . , n.

The players’ net revenues over infinite time horizon are:

Ji =
∞∑

t=0

δt ln(uit) ,

where 0 < δ < 1 – the common discount factor.



Fisher and Mirman (1992)

The biological growth rule is given by

xt+1 = f((xt − c1t), (yt − c2t)) ,
yt+1 = g((xt − c1t), (yt − c2t)) ,

where xt ≥ 0 – size of the population in the first region, yt ≥ 0

– size of the population in the second region, 0 ≤ c1t ≤ xt,
0 ≤ c2t ≤ yt – players’ catch at time t.

Players wish to maximize the sum of discounted utility
∞∑

t=1

δt
1 ln(c1t),

∞∑

t=1

δt
2 ln(c2t) ,

where 0 < δi < 1 – the discount factors (i = 1,2).



Our model of bioresource sharing problem

The center (referee) shares a reservoir between the competitors
and there are migratory exchanges between the regions of the
reservoir.

The dynamics is of the form
{

xt+1 = (xt − u1t)
α1−β1s(yt − u2t)

β1s ,

yt+1 = (yt − u2t)
α2−β2(1−s)(xt − u1t)

β2(1−s) ,

where xt ≥ 0 – size of the population in the first region, yt ≥ 0 –
size of the population in the second region, 0 < αi < 1 – natural
birth rate, 0 < βi < 1 – coefficients of migration between the
regions (i = 1,2), 0 ≤ u1t ≤ xt, 0 ≤ u2t ≤ yt – countries’ catch at
time t, 0 < δi < 1 – the discount factor for country i (i = 1,2).



2. Model with asymmetric players

Two players exploit the fish stock during infinite time horizon.
The dynamics of the fishery is

xt+1 = (εxt − u1t − u2t)
α , x0 = x , (1)

where xt ≥ 0 – the size of population at a time t, ε ∈ (0,1) –
natural death rate, α ∈ (0,1) – natural birth rate, uit ≥ 0 – the
catch of player i, i = 1,2.

The players’ net revenues over infinite time horizon are

Ji =
∞∑

t=0

δt
i ln(uit) , (2)

where 0 < δi < 1 – the discount factor for country i, i = 1,2.



2.1. Nash equilibrium

(uN
1 , uN

2 ) – Nash equilibrium if

J1(u
N
1 , uN

2 ) ≥ J1(u1, uN
2 ) , J2(u

N
1 , uN

2 ) ≥ J2(u
N
1 , u2) , ∀u1, u2 .

The Nash equilibrium of the problem (1), (2) is

uN
1 =

a2(1− a1)

a1 + a2 − a1a2
εx , uN

2 =
a1(1− a2)

a1 + a2 − a1a2
εx ,

where ai = αδi , i = 1,2. And the payoffs are

Vi(x, δi) = Ai lnx + Bi =
1

1− ai
lnx + Bi . (3)



2.2. Cooperative equilibrium

The objective is to maximize the sum of the players’ utilities:

J =
∞∑

t=0

δt
[
ln(u1t) + ln(u2t)

]
, (4)

where δ is unknown common discount factor.

The cooperative equilibrium of the problem (1), (4) is

uc
1 = uc

2 =
1− αδ

2
εx .

And the joint payoff is

V (x, δ) = A lnx + B =
2

1− αδ
lnx + B . (5)



3. The joint discount factor

First, we show that the joint discount factor for the case when
cooperative payoff is distributed proportionally among the players
exists.

Second, we suppose that the cooperative payoff is distributed in
the portion γV (x, δ) and (1 − γ)V (x, δ) and find the conditions
on δ and γ to satisfy the inequalities

γV (x, δ) ≥ V1(x, δ1) , (1− γ)V (x, δ) ≥ V2(x, δ2) .

To construct the solution we propose to use Nash bargaining
scheme, so

(γV (x, δ)− V1(x, δ1))((1− γ)V (x, δ)− V2(x, δ2)) → max
δ,γ

.



3.1. Proportional distribution

The conditions on δ to satisfy the inequalities

δi

δ1 + δ2
V (x, δ) ≥ Vi(x, δi) , i = 1,2.

are: if δ1V2(x, δ2) − δ2V1(x, δ1) < 0 then the common discount
factor satisfy the inequality δ < usl1 , otherwise δ < usl2 , where

usli =
Ki + (1 + α)Mi

2αMi
+

+

√
(Ki + (1 + α)Mi)

2 + 8ai(1− ai)Mi(ln(ε)− 1− (1− α) ln(2))

2αMi
,

Mi = (δ1+δ2)(ln(x)+Bi(1−ai)) , Ki = 2δi(1−ai)(α ln(2)−ln(x)) .
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Fig. 1. Conditions on δ: dark – usl1, light – usl2



3.2. Proportion and bargaining solution

We suppose that the cooperative payoff is distributed in the
portion γV (x, δ) and (1− γ)V (x, δ), where γ is a parameter. We
find the conditions on δ and γ to satisfy the rationality conditions

γV (x, δ) ≥ V1(x, δ1) , (1− γ)V (x, δ) ≥ V2(x, δ2) . (6)

We have the set of admissible parameters δ and γ. To construct
the solution we use Nash bargaining scheme, so

g = (γV (x, δ)− V1(x, δ1))((1− γ)V (x, δ)− V2(x, δ2)) → max
δ,γ

.



For the analytical solution δ → 0 , γ = γ∗

the next conditions should be fulfilled

V1(x, δ1) + V2(x, δ2) < 2 ln(
εx

2
) ,

2 ln(
εx

2
) < V1(x, δ1)− V2(x, δ2) < 2 ln(

2

εx
) . (7)

In other cases the solution can be found numerically.



δ1 = 0.1, δ2 = 0.2 (8) takes the form 0.070 < γ < 0.494. There-
fore the analytical solution exists: δ = 0, γ = 0.183. The players’
payoffs: V c

1 = −0.390, V c
2 = −1.560.

Let δ1 = 0.8 and δ2 = 0.9. (8) is not fulfilled and we find
the solution numerically. We obtain δ = 0.001, γ = 0.1 and
cooperative payoffs V c

1 = −0.195, V c
2 = −1.755.
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Fig. 2. Bargaining set δ1 = 0.1, δ2 = 0.2
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4. Bargaining procedure

Nash equilibrium payoffs for n step game are:

V N
i (x, δi) =

n∑

j=0

(ai)
j ln(x) +

n∑

j=1

(δi)
n−jA

j
i − (δi)

n ln(2) . (8)

Here we obtain the cooperative strategies without determining
the joint discount factor using recursive Nash bargaining proce-
dure.

We consider two different approaches of bargaining procedure:

1. The cooperative strategies are determined as the Nash bar-
gaining solution for the whole planning horizon.

2. We use recursive Nash bargaining procedure determining the
cooperative strategies on each time step.



4.1. Nash bargaining for the whole game

We construct cooperative strategies and the payoff maximizing
the Nash product for the whole game, so we need to solve the
next problem

(V nc
1 (x, δ1)− V N

1 (x, δ1))(V
nc
2 (x, δ2)− V N

2 (x, δ2)) =

= (
n∑

t=0

δt
1 ln(uc

1t)− V N
1 (x, δ1))(

n∑

t=0

δt
2 ln(uc

2t)− V N
2 (x, δ2)) → max ,

where V N
i (x, δi) – noncooperative payoffs (8).

Cooperative payoffs for n step game take the forms:

Hn
1(γ1

1, . . . , γn
1 , γ1

2, . . . , γn
2) =

1− an+1
1

1− a1
ln(x) +

n∑

j=1

δ
n−j
1 ln(γj

1) +
n∑

j=1

δ
n−j
1

a1(1− a
j
1)

1− a1
ln(ε− γ

j
1 − γ

j
2)− δn

1 ln(2) (9)



and

Hn
2(γ1

1, . . . , γn
1 , γ1

2, . . . , γn
2) =

1− an+1
2

1− a2
ln(x) +

n∑

j=1

δ
n−j
2 ln(γj

2) +
n∑

j=1

δ
n−j
2

a2(1− a
j
2)

1− a2
ln(ε− γ

j
1 − γ

j
2)− δn

2 ln(2).(10)

The cooperative strategies are connected as

γn
1=

εγ1
1an−1

2 (1− a2
2)(1− a1)

εan−1
1 (1−a1)(1−an+1

2 )+γ1
1(a

n−1
2 (1−a2

2)−an−1
1 (1−a2

1)+an−1
1 an−1

2 (a2
2−a2

1))
,

γn
2 =

ε(1− a1)(1− a2)− γn
1(1− a2)(1− an+1

1 )

(1− a1)(1− an+1
2 )

.



And γ1
1 can be determined from one of the first order conditions,

for example, the last one

an−1
1 (ε− γ1

1(1 + a1))(H
n
1 − V1)− an−1

2 (1 + a2)γ
1
1(H

n
2 − V2) = 0 .

Statement. The Nash bargaining scheme for infinite time hori-
zon gives the advantages to the player with lower discount factor.

If δ1 < δ2 then as n →∞

γn
1 → ε(1− a1) , γn

2 → 0 .

If δ2 < δ1 then as n →∞

γn
1 → 0 , γn

2 → ε(1− a2) .



Modelling

We present the results of numerical modelling for 20-stage game
with the next parameters:

ε = 0.6 , α = 0.3 , x0 = 0.8 ,
δ1 = 0.85 , δ2 = 0.9 .

We obtain γ1
1 = 0.1778. The cooperative and Nash gains are

V nc
1 (x, δ1) = −13.2103 > V N

1 (x, δ1) = −14.6439 ,

V nc
2 (x, δ2) = −20.5328 > V N

2 (x, δ2) = −23.2596 .



0.4

0.5

0.6

0.7

0.8

xc

2 4 6 8 10 12 14 16 18 20
Time t

Fig. 4. The population size: dark – cooperative, light – Nash
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4.2. Recursive Nash bargaining solution

On each time moment the cooperative strategies are determined
as the Nash bargaining solution taking the non-cooperative prof-
its as a status-quo point.

We start with the one-step game and assume that if there were
no future period, the countries would get the remaining fish in
the ratio 1 : 1. Let the initial size of the population be x.

Noncooperative gains are

H1N
1 = (1 + a1) ln(x) + A1

1 − δ1 ln(2) , (11)

H1N
2 = (1 + a2) ln(x) + A1

2 − δ2 ln(2) . (12)



The cooperative strategies are determined maximizing the Nash
product

H1c = (ln(u1) + a1 ln(εx− u1 − u2)− δ1 ln(2)−H1N
1 ) ·

·(ln(u2) + a2 ln(εx− u1 − u2)− δ2 ln(2)−H1N
2 ) =

= (H1c
1 −H1N

1 )(H1c
2 −H1N

2 ) → max ,

where H1N
i are given in (11)–(12).

The cooperative strategies are can be found as the solution of
the next equation

γ1c
2

(
ln(γ1c

2 )+a2 ln(ε−γ1c
1 −γ1c

2 )−A1
2

)
=γ1c

1

(
ln(γ1c

1 )+a1 ln(ε−γ1c
1 −γ1c

2 )−A1
1

)

(13)
with the relation

γ1c
2 =

ε− γ1c
1 (1 + a1)

1 + a2
.



The cooperative gains for one step game have the forms

H1c
1 = (1 + a1) ln(x) + ln(γ1c

1 ) + a1 ln(ε− γ1c
1 − γ1c

2 )− δ1 ln(2),(14)

H1c
2 = (1 + a2) ln(x) + ln(γ1c

2 ) + a2 ln(ε− γ1c
1 − γ1c

2 )− δ2 ln(2).(15)

We pass to two stage game. If the players act non-cooperatively
till the end of the game then the gains are

H2N
1 = (1 + a1 + a2

1) ln(x) + A2
1 + δ1A1

1 − δ21 ln(2) , (16)

H2N
2 = (1 + a2 + a2

2) ln(x) + A2
2 + δ2A1

2 − δ22 ln(2) . (17)



We determine the cooperative strategies maximizing the Nash
product

H2c = (ln(u1) + δ1H1c
1 −H2N

1 )(ln(u2) + δ2H1c
2 −H2N

2 ) =

= (H2c
1 −H2N

1 )(H2c
2 −H2N

2

)
→ max ,

where H1c
i are the cooperative gains for one step game and are

given in (14)–(15) and H2N
i are determined in (16)–(17).

Analogously we get the equation for γ2c
1 and γ2c

2 .



The process can be repeated for the n-stage game and we have
the next form of the cooperative profits

Hnc
1 (γ1

1, . . . , γn
1 , γ1

2, . . . , γn
2) =

n∑

j=0

a
j
1 ln(x) +

n−1∑

j=0

δ
n−j
1

[
ln(γ(n−j)c

1 ) +
n−j∑

i=1

ai
1 ln(ε− γ

(n−j)c
1 − γ

(n−j)c
2 )

]
− δn

1 ln(2)(18)

and

Hnc
2 (γ1

1, . . . , γn
1 , γ1

2, . . . , γn
2) =

n∑

j=0

a
j
2 ln(x) +

n−1∑

j=0

δ
n−j
2

[
ln(γ(n−j)c

2 ) +
n−j∑

i=1

ai
2 ln(ε− γ

(n−j)c
1 − γ

(n−j)c
2 )

]
− δn

2 ln(2).(19)



Modelling

The cooperative and Nash gains are

V nc
1 (x, δ1) = −14.1039 > V N

1 (x, δ1) = −14.6439 ,

V nc
2 (x, δ2) = −20.5108 > V N

2 (x, δ2) = −23.2596 .
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Fig. 7. The population size: dark – cooperative, light – Nash
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Fig. 9. The catch of player 2: dark – cooperative, light – Nash



If we compare these profits with the profits that we get in the
previous scheme we can conclude that for player 1 it is smaller
and for player 2 – it is almost the same. This fact shows that
using the recursive Nash bargaining solution is less profitable for
the player with smaller discount factor.



We considered discrete time bioresource management problem
with two players which differ in their discount factors (time-
preferences).

We show that the joint discount factor exists for proportional
solution and the division in portion γ:1 − γ. We propose to use
the Nash bargaining solution to derive the joint discount factor
and the portion.

Next we decline to use the joint discount factor and determine
players’ cooperative strategies and payoffs using Nash bargaining
procedure. We present two different approaches of bargaining
procedure. In the first one the cooperative strategies are deter-
mined as the Nash bargaining solution for the whole planning
horizon. In the second, we use recursive Nash bargaining proce-
dure determining the cooperative strategies on each time step.



5.1. Model with fixed times of exploitation

Let us consider the case when the first player extracts the stock
n1 time moments, and the second – n2. Let n1 < n2. So, we
have the situation when on time interval [0, n1] players cooperate
and we need to determine their strategies. After n1 till n2 the
second player acts individually.

We construct cooperative strategies and the payoff maximizing



the Nash product for the whole game:

(V nc
1 (x, δ1)− V N

1 (x, δ1)[0, n1]) ·
(V nc

2 (x, δ2) + V
(n2−n1)
2 − V N

2 (x, δ2)[0, n1]− V2(x, δ2)[n1, n2]) =

= (
n1∑

t=0

δt
1 ln(uc

1t)− V N
1 (x, δ1)[0, n1]) ·

(
n1∑

t=0

δt
2 ln(uc

2t) +
n2∑

t=n1

δt
2 ln(u2t)− V N

2 (x, δ2)[0, n1]− V2(x, δ2)[n1, n2])(20)

where V N
i (x, δi)[0, n1] are the non-cooperative gains, V

(n2−n1)
2 –

the second player’s individual payoff starting from the cooper-
ative point x, V2(x, δ2)[n1, n2] – the second player’s individual
payoff starting from the noncooperative point xNn1.

We define n = n2 − n1.



To obtain the cooperative gains in the problem (20) we again
start with one step game on the interval [0, n1] and so on. After
n1 the we assume that the first player gets some portion of the
remaining stock – k and the second HNn

2 starts exploitation from
the portion (1− k) of the remaining stock.

For the n1-stage game we have the next form of the profits

H
n1
1 (γ1

1, . . . , γ
n1
1 , γ1

2, . . . , γ
n1
2 ) =

1− a
n1+1
1

1− a1
ln(x) +

+
n1∑

j=1

δ
n1−j
1 ln(γj

1) +
n∑

j=1

δ
n1−j
1

a1(1− a
j
1)

1− a1
ln(ε− γ

j
1 − γ

j
2) + δ

n1
1 ln(k)(21)



and

H
n1
2 (γ1

1, . . . , γ
n1
1 , γ1

2, . . . , γ
n1
2 ) =

1− a
n2+1
2

1− a2
ln(x) +

+
n1∑

j=1

δ
n1−j
2 ln(γj

2) +
n1∑

j=1

δ
n1−j
2

a2(1− a
n2−n1+j
2 )

1− a2
ln(ε− γ

j
1 − γ

j
2) +

+
n2−n1∑

j=1

δ
n2−j
2 Bj + δ

n1
2

1− a
n2−n1+1
2

1− a2
ln(1− k).(22)



The cooperative strategies are connected as

γ
n1
1 =

εγ1
1

n+n1∑
j=n1−1

a
j
2

εa
n1−1
1

n+n1∑
j=0

a
j
2 + γ1

1(
n+n1∑

j=n1−1
a

j
2

n1∑
j=0

a
j
1 − (an1−1

1 + a
n1
1 )

n+n1∑
j=0

a
j
2)

,(23)

γ
n1
2 =

ε− γ
n1
1

n1∑
j=0

a
j
1

n+n1∑
j=0

a
j
2

. (24)

And γ1
1 can be determined from one of the first order conditions.



Modelling

ε = 0.6 , α2 = 0.3 , n2 = 20 , n1 = 10 ,

δ1 = 0.85 , δ2 = 0.9 , x0 = 0.8 , k = 1
3 .

We get γ1
1 = 0.272372955. For the first player we compare the

cooperative and noncooperative gains on time interval [0, n1]

V nc
1 (x, δ1)[0, n1] = −10.387 > V N

1 (x, δ1)[0, n1] = −11.901 ,

For the second player we compare the cooperative gain on time
interval [0, n1] plus acting individually on time interval [n1, n2]
and noncooperative gain on time interval [0, n1] plus individual
gain on time interval [n1, n2]

V nc
2 (x, δ2)[0, n2] = −19.637 > Ṽ N

2 (x, δ2)[0, n2] = −23.259 .

One can notice that the cooperative profits are lager that non-
cooperative ones for both players.
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Fig. 10. The population size: dark – cooperative, light – Nash
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Fig. 11. The catch of player 1: dark – cooperative, light – Nash
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3. The model with random times of exploitation

The first player extracts the stock n1 time moments, and the
second – n2. n1 is random variable with range {1, . . . , N} and
corresponding probabilities {θ1, . . . , θN}. n2 is random variable
with the same range and probabilities {ω1, . . . , ωN}.



First, we construct the players payoffs:

H1 = E

{ n1∑

t=1

δt
1 ln(u1t)I{n1≤n2} +

+
( n2∑

t=1

δt
1 ln(u1t) +

n1∑

t=n2

δt
1 ln(ua

1t)
)
I{n1>n2}

}
=

=
N∑

n1=1

θn1

[ N∑
n2=n1

ωn2

n1∑

t=1

δt
1 ln(u1t) +

+
n1−1∑

n2=1

ωn2

( n2∑

t=1

δt
1 ln(u1t) +

n1∑

t=n2

δt
1 ln(ua

1t)
)]

, (25)



H2 =
N∑

n2=1

ωn2

[ N∑
n1=n2

θn1

n2∑

t=1

δt
2 ln(u2t) +

+
n2−1∑

n1=1

θn1

( n1∑

t=1

δt
2 ln(u2t) +

n2∑

t=n1

δt
2 ln(ua

2t)
)]

, (26)

where ua
it is a player i’s strategy when his opponent quits the

game, i = 1,2.

Nash equilibrium

First we determine the Nash equilibrium as we use it as a status-
quo point for the Nash bargaining solution.

As usually we will seek the value functions in the form V N
i (τ, x) =

Aτ
i lnx + Bτ

i and the Nash strategies in the form uN
iτ = γN

iτ x,
i = 1,2.



From the first order conditions we get

γN
1τ =

εδτ
1Aτ

2

δτ
1Aτ

2 + δτ
2Aτ

1 + αAτ
1Aτ

2P τ+1
τ

, γN
2τ =

εδτ
2Aτ

1

δτ
1Aτ

2 + δτ
2Aτ

1 + αAτ
1Aτ

2P τ+1
τ

,

(27)
where

Aτ
1 =

δτ
1 + C1τ

N∑
n1=τ+1

θn1

n1−τ∑
j=0

a
j
1

1− αP τ+1
τ

, Aτ
2 =

δτ
2 + C2τ

N∑
n2=τ+1

ωn2

n2−τ∑
j=0

a
j
2

1− αP τ+1
τ

,

(28)

Bτ
1=

δτ
1 ln(γN

1τ)+αAτ
1P τ+1

τ ln(ε−γN
1τ−γN

2τ)+C1τ

N∑
n1=τ+1

θn1

n1−τ∑
j=1

δ
n1−τ−j
1 D

j
1

1− P τ+1
τ

,



Bτ
2=

δτ
2 ln(γN

2τ)+αAτ
2P τ+1

τ ln(ε−γN
1τ−γN

2τ)+C2τ

N∑
n2=τ+1

ωn2

n2−τ∑
j=1

δ
n2−τ−j
2 D

j
2

1− P τ+1
τ

.

(29)

So we determined the Nash strategies and the Nash payoffs
V N

i (τ, x) = Aτ
i lnx + Bτ

i , i = 1,2. Now we can construct the
cooperative behavior.



The cooperative behavior

We construct cooperative strategies and the payoff maximizing
the Nash product for the whole game, so we need to solve the
next problem

(V c
1(1, x)− V N

1 (1, x))(V c
2(1, x)− V N

2 (1, x)) =

= (
N∑

n1=1

θn1

[ N∑
n2=n1

ωn2

n1∑

t=1

δt
1 ln(uc

1t) +

+
n1−1∑

n2=1

ωn2(
n2∑

t=1

δt
1 ln(uc

1t) +
n1∑

t=n2

δt
1 ln(ua

1t))
]
− V N

1 (1, x))·



·(
N∑

n2=1

ωn2

[ N∑
n1=n2

θn1

n2∑

t=1

δt
2 ln(uc

2t) +

+
n2−1∑

n1=1

θn1(
n1∑

t=1

δt
2 ln(uc

2t) +
n2∑

t=n1

δt
2 ln(ua

2t))
]
− V N

2 (1, x)) → max,(30)

where V N
i (1, x) = A1

i lnx + B1
i , i = 1,2 are the non-cooperative

gains determined in (27)-(29).



The process can be repeated till the case when step 1 has arrived
and we have the next form of the profits:

V c
i (N − k, x) =

= δN−k
i ln(uc

iN−k) + αPN−k+1
N−k Gi

N−k+1 ln(εx− uc
1N−k − uc

2N−k) +

+
k−1∑

l=2

PN−l
N−k[δ

N−l
i ln(γc

iN−l) + αPN−l+1
N−l ln(ε− γc

1N−l − γc
2N−l)] +

+PN−1
N−k [δN−1

i ln(γc
iN−1)+PN

N−1αAi ln(ε−γc
1N−1−γc

2N−1) + PN
N−1Bi] +

+
k∑

l=1

PN−l
N−kCiN−lH

l
i(ni).(31)



where

Hl
1(n1) =

N∑

n1=N−l+1

θn1

n1∑

t=N−l

δt
1 ln(ua

1t) ,

Hl
2(n2) =

N∑

n2=N−l+1

ωn2

n2∑

t=N−l

δt
2 ln(ua

2t) ,

G1
k =

k∑

l=1

δN−l
1 αk−lPN−l

N−k + αkA1PN
N−k ,

G2
k =

k∑

l=1

δN−l
2 αk−lPN−l

N−k + αkA2PN
N−k .

The cooperative strategies are connected as

γc
2N−k =

δN−k
1 δN−k

2 ε− δN−k
2 γc

1N−kG1
k

δN−k
1 G2

k

, (32)



γc
1N−k =

δN−k
1 εγc

1N−1G2
1

δN−1
1 εG2

k + γc
1N−1(G

1
kG2

1 −G1
1G2

k)
. (33)

And γc
1N−1 can be determined from one of the first order condi-

tions, for example, the last one

− αA1PN
N−1

ε− γc
1N−1 − γc

2N−1

(V c
2(1, x)− V N

2 (1, x)) +

+
(

δN−1
2

γc
2N−1

− αA2PN
N−1

ε− γc
1N−1 − γc

2N−1

)
(V c

1(1, x)− V N
1 (1, x)) = 0 . (34)



Modelling

We use Monte-Carlo scheme for the simulation. N = 10.

For the same parameters and the next probabilities

θi = 0.1 , ωi = 0.005i + 0.0725

we get the expected cooperative and Nash payoffs

V c
1(1, x) = −6.2151 > V N

1 (1, x) = −10.1958 ,

V c
2(1, x) = −7.3256 > V N

2 (1, x) = −12.8829 .

The fig. presents the results of modelling with 50 simulations.
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Fig. 13. Nash equilibrium
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Fig. 14. Cooperative equilibrium



We considered discrete time bioresource management problem
with two players which differ not only in discount factors, but in
times of exploitation.

In the first model, participations’ planning horizons are known.
Here one player leaves the game at the fixed time moment and
receives some portion of the remaining stock as compensation.
The second player continues exploitation till the end of the game
individually. To construct the cooperative strategies we use Nash
bargaining scheme for the whole planning horizon.

In the second model, the times of exploitation are random vari-
ables with known discrete distribution. First, we construct Nash
equilibrium and take it as a status-quo point. Second, we deter-
mine the cooperative strategies using recursive Nash bargaining
procedure.
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