MATHEMATICAL MODELING OF NITRIFICATION AND ORGANIC MATTER OXIDATION PROCESSES IN THE BIOLOGICAL TREATMENT SYSTEM

 S_{s}

Kirillov A. N., Smirnov N. V. IAMR KarRC RAS

Scheme of the aeration tank

- \odot wastewater entrance to the aeration tank
- activated sludge entrance to the aeration tank
- → direction of activated sludge flow
- ---- border of compartments

Concentrations of the model:

- S_s readily biodegradable organic matter
- S_{NH} ammonia nitrogen
- X_H active heterotrophic biomass
- X_A active autotrophic biomass

Data:
$$S_S$$
, S_{NH} , $X = X_A + X_H$.

Mathematical model

- Mono's trophic function

$$f_1(\mathbf{S}_S) = \frac{1}{1 + e^{10^{\delta} \left(\frac{c+\delta}{\mathbf{S}_S} - 1\right)}},$$
$$f_2(\mathbf{S}_S, \mathbf{S}_{NH}, \mathbf{K}_{\alpha}) = \frac{\mathbf{S}_{NH}/(\mathbf{S}_S - c)}{\mathbf{K}_{\alpha} + \mathbf{S}_{NH}/(\mathbf{S}_S - c)}$$

x

 $\overline{x+p}$

f(x,p) =

- Switching functions.

$$\dot{S}_{s} = Q(S_{s}^{in} - S_{s}) - \frac{\mu_{H}}{Y_{H}} f(S_{s}, K_{s}) f(S_{o}, K_{o,H}) \frac{1}{1 + e^{10^{\delta}(\frac{c+\delta}{S_{s}} - 1)}} X_{H},$$
(1)

$$\dot{S}_{NH} = Q(S_{NH}^{in} - S_{NH}) - \frac{\mu_A}{Y_A} f(S_{NH}, K_{NH}) f(S_O, K_{O,A}) \frac{S_{NH} / (S_S - C)}{K_a + S_{NH} / (S_S - C)} X_A,$$
(2)

$$\dot{X}_{H} = Q(X_{H}^{in} - X_{H}) + \left(\mu_{H} f(S_{S}, K_{S}) f(S_{O}, K_{O,H}) \frac{1}{1 + e^{10^{\delta}(\frac{C+\delta}{S_{S}} - 1)}} - b_{H} \right) X_{H},$$
(3)

$$\dot{X}_{A} = Q(X_{A}^{in} - X_{A}) + \left(\mu_{A}f(S_{NH}, K_{NH})f(S_{O}, K_{O,A})\frac{S_{NH}/(S_{S} - c)}{K_{\alpha} + S_{NH}/(S_{S} - c)} - b_{A}\right)X_{A}, \quad (4)$$

$\delta = 10^{-3}$

- c~- concentration of $S_{\scriptscriptstyle S}$ in the end of $C_{\scriptscriptstyle 5}$
- V_{cv} consumption of wastewater
- V_{il} consumption of activated sludge
- $\beta~$ specific growth rate for heterotrophic biomass

Parameter estimation

 $P^0 = (p_1^0, ..., p_{n_p}^0)$, n_p - number of parameters.

Least squares criterion:

$$J = \sum_{i=1}^{n_y} sc_i^2 (y_i - y_i^m)^T (y_i - y_i^m), SC_i - \text{scale factor}, y_i - \text{output observed from the real plant}, y_i^m - \text{model output}, n_y - \text{number of measured concentrations}.$$

Sensitivity of the model

$$s_{ij} = sc_i \frac{y_i^m (P^0 + \delta P_j) - y_i^m (P^0)}{\delta p_j} \quad \text{- sensitivity function}$$
$$\delta_j^{msqr} = \sqrt{\frac{1}{n_y} \sum_{i=1}^n s_{ij}^2} \quad \text{- sensitivity measure}^1$$

Table of values of sensitivity measure

Parameter	C_1	C_2	c_{32}	C_4	C_5
Y_H	0.49	0.25	-	-	-
Y_A	3.06	3.72	0.97	2.03	0.01
μ_H	52.53	38.67	-	-	-
μ_A	936.02	1888.1	782.85	20452.00	2341.40
\mathbf{b}_{H}	9.59	23.39	-	-	-
\mathbf{b}_A	4.80	21.90	2.78	2.93	0.80
K_S	0.00	0.00	-	-	-
K_{NH}	0.11	0.25	0.06	0.05	0.00
$K_{O,H}$	0.06	0.05	-	-	-
$K_{O,A}$	0.08	0.26	0.06	0.03	0.00
K_{α}	0.01	0.01	0.00	0.00	0.00
β	-	-	15.67	26.98	10.781

¹. Brun R. et al. Practical identifiability of ASM2d parameters—systematic selection and tuning of parameter subsets. 2002.

Sensitivity of the model

$$S = \{s_{ij}\}_{j=1,...,n_p}^{i=1,...,n_y}$$

 $\widetilde{S} = \left\{ s_{ij} \right\}$ - normalized matrix, $\widetilde{s}_{ij} = \frac{s_{ij}}{\|s_{ij}\|}$.

 $\gamma_k = \frac{1}{\min_{\|\beta\|=1} \|\tilde{S}_k\beta\|} = \frac{1}{\sqrt{\tilde{\lambda}_k}} - \text{collinearity index}$

 \widetilde{S}_k^T - submatrix \widetilde{S} containing those columns that correspond to the parameter subset $\widetilde{\lambda}_k$ - the smallest eigenvalue of $\widetilde{S}_k^T \widetilde{S}_k$

$$\rho_k = det(S_k^T S_k)^{1/2k} = \left(\prod_{j=1}^k \lambda_j\right)^{1/2k}$$

- determinant measure

Compartment	Parameters	γ_k	$ ho_k$
C_1	μ_A, \mathbf{b}_H	1.11	132.74
C_2	μ_A, \mathbf{b}_H	1.08	2295.59
c_{32}	μ_A, β	1.00	156.63
C_4	μ_A, β	1.00	1050.50
C_5	μ_A,β	1.00	224.69

Parameter estimation

$(S^T S) _{\mathcal{D}_0} \Delta P = S^T e_i _{\mathcal{D}_0}$		$\Delta P = P - P^0$		$e_i = y_i -$	y_i^m
$(P_{1}, P_{1}) = P_{1}$	•		2		

Parameter	Units	C_1	C_2	c_{32}	C_4	C_5
Y_H	$(g \text{ cell } X_H) \cdot (g \text{ BOD})^{-1}$	0.75	0.75	-	-	-
Y_A	$(g \text{ cell } X_A) \cdot (g \text{ NH})^{-1}$	0.17	0.28	0.28	0.07	0.28
μ_H	day^{-1}	10.00	7.00	-	-	
μ_A	day^{-1}	0.80	0.80	0.66	0.01	0.001
b_H	day^{-1}	0.05	0.05	-	-	_ 1_1 (
b_A	day^{-1}	0.05	0.05	0.05	0.09	0.06
K_S	$(g BOD) \cdot m^{-3}$	200.00	40.00	<u>1</u> 200	<u>1</u>	
K_{NH}	$(g NH) \cdot m^{-3}$	1.00	0.70	1.00	0.30	1.00
$K_{O,H}$	$(g O_2) \cdot m^{-3}$	0.20	0.01		<u>_</u> X	<u>- 1</u> 20
$K_{O,A}$	$(g O_2) \cdot m^{-3}$	0.40	0.40	1.50	0.40	1.50
K_{α}	$(g NH) \cdot (g BOD)^{-1}$	5.00	5.00	5.00	5.00	5.00
β	day^{-1}	-	-	20,306	4,562	-24,520

¹. Chai Q. Modeling, Estimation, and Control of Biological Wastewater Treatment Plants. Doctoral Theses at NTNU 2008:108 at HiT, Porsgrunn. Telemark University College, 2008.

	S_N	$_{VH} ((g NH) \cdot m)$	$^{-3})$
C_i	y	$y^m(P^0)$	$y^m(P)$
C_1	2.750	2.748	2.749
C_2	3.50	3.501	3.500
C_3	2.750	3.192	2.722
C_4	2.250	2.444	2.249
C_5	2.250	2.249	2.249

	$X ((g X) \cdot m^{-3})$					
C_i	y	$y^m(P^0)$	$y^m(P)$			
C_1	3300.000	3273.000	3273.000			
C_2	2635.000	2631.500	2631.500			
C_3	3430.000	3072.4	3081.100			
C_4	3720.000	3843.600	3839.000			
C_5	2760.000	2763.500	2744.800			

CONCLUSION

•Mathematical model of nitrification and oxidation of readily biodegradable organic matter by active sludge is proposed.

•Subsets of identifiable parameters are determined. Parametric identifiability characteristics of the model and values of parameters are found out by means of sensitivity theory.

Thanks for your attention!