РАЗВИТИЕ ТУРБУЛЕНТНОГО ТЕПЛОВОГО ФАКЕЛА НАД ГОРОДСКИМ ОСТРОВОМ ТЕПЛА В УСТОЙЧИВО СТРАТИФИЦИРОВАННОЙ АТМОСФЕРЕ

Курбацкий А. Ф.

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН

Курбацкая Л. И.

Институт вычислительной математики и математической геофизики СО РАН

Схема циркуляции над островом тепла

- Тепловой факел малого относительного удлинения:
 z_i / D << 1
- z_i- высота перемешанного слоя, определена высотой, на которой |-(T_m - T_a)| максимальна.

Движение воздуха рассматривается, как обладающее осевой симметрией

Физическая постановка задачи о циркуляции над островом тепла

- Проникающая турбулентная конвекция индуцируется постоянным потоком тепла Н от поверхностного источника тепла (нагреваемой пластины диаметра D).
- Окружающий воздух устойчиво стратифицирован и первоначально находится в покое.

Модель турбулентных потоков тепла

Для случая больших турбулентных чисел Рейнольдса замкнутое уравнение для вектора турбулентного потока

$$\frac{\mathrm{D}\mathbf{u}_{i}\theta}{\mathrm{D}t} - \frac{\partial}{\partial \mathbf{x}_{k}} \left\{ \mathbf{c}_{s\theta} \frac{\mathrm{E}}{\varepsilon} \left(\overline{\mathbf{u}_{i}\mathbf{u}_{\alpha}} \frac{\partial \mathbf{u}_{k}\theta}{\partial \mathbf{x}_{\alpha}} + \overline{\mathbf{u}_{k}\mathbf{u}_{\alpha}} \frac{\partial \mathbf{u}_{i}\theta}{\partial \mathbf{x}_{\alpha}} \right) \right\} = -\overline{\mathbf{u}_{i}\mathbf{u}_{j}} \frac{\partial \mathrm{T}}{\partial \mathbf{x}_{j}}$$
$$-\overline{\mathbf{u}_{j}\theta} \frac{\partial \mathrm{U}_{i}}{\partial \mathbf{x}_{j}} - \mathbf{c}_{1\theta} \frac{\overline{\mathbf{u}_{i}\theta}}{\sqrt{\tau\tau_{\theta}}} + \mathbf{c}_{2\theta}\overline{\mathbf{u}_{j}\theta} \frac{\partial \mathrm{U}_{i}}{\partial \mathbf{x}_{j}} + \mathbf{c}_{3\theta}\mathbf{g}_{i}\beta\overline{\theta}^{2} - \mathbf{g}_{i}\beta\overline{\theta}^{2}$$

упрощается в приближении слабо равновесной турбулентности. Горизонтальный и веертикальный потоки имеют вид

$$-\overline{u\theta} = c_{T} \frac{E^{2}}{\epsilon} \sqrt{2R} \frac{\partial T}{\partial r},$$

$$-\overline{w\theta} = c_{T} \frac{E^{2}}{\epsilon} Fr^{-2} \sqrt{2R} \frac{\partial T}{\partial z} - \frac{1 - c_{2\theta}}{c_{1\theta}} \frac{E}{\epsilon} \sqrt{2R} \cdot Fr^{-2} \overline{\theta^{2}}.$$

Модели турбулентных потоков импульса

Для нормальных турбулентных напряжений используется градиентная модель Буссинеска, сохраняющая некоторую анизотропию нормальных напряжений:

$$\overline{u^2} = \frac{2}{3}E - 2K_m \frac{\partial U}{\partial r}, \ \overline{w^2} = \frac{2}{3}E - 2K_m \frac{\partial W}{\partial z}, \ \overline{v^2} = \frac{2}{3}E - 2K_m \frac{U}{r}.$$

Для касательного турбулентного напряжения модель Буссинеска имеет вид:

$$-\overline{uw} = K_m \left(\frac{\partial U}{\partial z} + \frac{\partial W}{\partial r} \right)$$

Параметры моделей турбулентных потоков

$$\begin{split} \frac{\partial \mathbf{E}}{\partial t} &+ \frac{1}{r} \frac{\partial}{\partial r} (r \mathbf{U} \mathbf{E}) + \frac{\partial}{\partial z} (\mathbf{W} \mathbf{E}) = \frac{1}{r} \frac{\partial}{\partial r} \left\{ r \left[\operatorname{Re}^{-1} + \frac{\mathbf{K}_{m}}{\sigma_{\mathrm{E}}} \right] \frac{\partial \mathbf{E}}{\partial z} \right\} + \\ &+ \frac{\partial}{\partial z} \left\{ r \left[\operatorname{Re}^{-1} + \frac{\mathbf{K}_{m}}{\sigma_{\mathrm{E}}} \right] \frac{\partial \mathbf{E}}{\partial z} \right\} + \operatorname{P} - \varepsilon + \mathbf{G}, \\ \frac{\partial \varepsilon}{\partial t} &+ \frac{1}{r} \frac{\partial}{\partial r} (r \mathbf{U} \varepsilon) + \frac{\partial}{\partial z} (\mathbf{W} \varepsilon) - \frac{1}{r} \frac{\partial}{\partial r} \left\{ r \left[\operatorname{Re}^{-1} + \frac{\mathbf{K}_{m}}{\sigma_{\varepsilon}} \right] \frac{\partial \varepsilon}{\partial r} \right\} \\ &- \frac{\partial}{\partial z} \left\{ r \left[\operatorname{Re}^{-1} + \frac{\mathbf{K}_{m}}{\sigma_{\mathrm{E}}} \right] \frac{\partial \varepsilon}{\partial z} \right\} = -\frac{\varepsilon}{\tau} \Psi, \\ \frac{\partial \overline{\theta^{2}}}{\partial t} &+ \frac{1}{r} \frac{\partial}{\partial r} (r \mathbf{U} \overline{\theta^{2}}) + \frac{\partial}{\partial z} (\mathbf{W} \overline{\theta^{2}}) = \frac{1}{r} \frac{\partial}{\partial r} \left\{ r \left[c_{\theta 2} \frac{\mathbf{E}}{\varepsilon} \overline{\theta^{2}} \right] \frac{\partial \overline{\theta^{2}}}{\partial r} \right\} + \\ &+ \frac{\partial}{\partial z} \left\{ r \left[c_{\theta 2} \frac{\mathbf{E}}{\varepsilon} \overline{\mathbf{w}^{2}} \right] \frac{\partial \overline{\theta^{2}}}{\partial z} \right\} - 2 \overline{u} \overline{\theta} \frac{\partial T}{\partial r} - 2 \overline{w} \overline{\theta} \frac{\partial T}{\partial z} - \frac{1}{\mathrm{R}} \frac{\varepsilon}{\mathrm{R}} \overline{\theta^{2}}. \\ &(\mathrm{R} = \tau_{\theta} / \tau = (1/2) \overline{\theta^{2}} / \varepsilon_{\theta} / (\mathrm{E} / \varepsilon) = 0, 6) \end{split}$$

 В согласии с результатами лабораторного эксперимента, численно моделируется крупномасштабная проникающая конвекция над остром тепла без разрешения поверхностного слоя городской шероховатости.

Поэтому граничные условия формулируются на первом расчетном слое вычислительной сетки с учетом условий термической устойчивости среды (неустойчивые условия над островом тепла (нагревателе), устойчивые условия-вне нагревателя).

•Используется теория локального подобия приземного слоя Монина-Обухова по безытерационной процедуре нахождения поверхностных потоков: скорости трения u*, масштаба температурного поля θ* и масштаба Монина-Обухова

$$\mathbf{L} = \mathbf{u}_*^2 / (\mathbf{k}\beta g \theta_*).$$

★Граничное условие для горизонтальной скорости формулируется к конечно-разностном виде на двух нижних узлах сетки

$$U_1/U_2 = [Ln(z_1/z_0) - \Psi(z_1)]/[Ln(z_2/z_0) - \Psi(z_2)].$$

★Граничное условие для температуры определяется: на нагревателе заданным потоком тепла H_0 , вне нагревателя -температурой поверхности T_0 .

<u>Численная реализация</u>

Использован метод конечных разностей с полуневной схемой переменных направлений ("вторая схема Роуча с разностями против потока") на разностной сетке со смещенными узлами. Вычисления проведены на сетке с 25 узлами по радиальной координате, а по вертикали сетка имела 120 узлов. Число узлов сетки в радиальном направлении могло варьироваться путем изменения линейного размера области интегрирования. Шаг по времени был выбран из условия сохранения точности численного решения.

Картины линий тока над островом тепла

 Эксперимент
 Lu et al. (Н =0.65 вт/см, Fr=0.077, Re=8280,
 (∂T / ∂z)_a =0.5, /см)
 (JAM.1997.V.36)

 численное моделирование при тех же параметрах эксперимента.

Радиальная(горизонтальная) скорость на различных высотах

Эксперимент Lu et al. 1997 (Fr = 0.077, Re = 8280)

Радиальная (горизонтальная) скорость и турбулентная скорость трения на поверхности Эксперимент Lu et al. 1997 (Fr=0.077, Re=8280)

r/D

Интенсивности турбулентности в факеле над островом тепла

Диссипация энергии турбулентности *є* нормированная на w_D³ / z_i как функция z / z_i ри г / D = 0.025.

Вертикальные профили температуры в центре острова тепла

Экспериментальные данные. Lu et al. 1997

Re = 4500, Fr = 0.088

Форма теплового факела

1. Вычисленный профиль температуры внутри плума (факела) имеет характерное "вздутие" (swelling): температура внутри плума ниже, чем температура снаружи на той же самой высоте. Создается область отрицательной плавучести, вследствие возвышения плума в центре

2. Такое поведение показывает, что плум имеет возвышающуюся верхнюю часть в форме "шляпы"

Вертикальный профиль дисперсии температуры

Измеренный () и вычисленный () профили среднеквадратичных флуктуаций температуры в центре острова тепла (r / D = 0) (Re = 4500, Fr = 0.088).

Temperature isotherms and vector field of velocities

Вертикальные разрезы скорости ветра (U_G=1ms⁻¹)

Вертикальные разрезы потенциальной температуры и горизонтальной скорости ветра на 12:00

Vector field of horizontal wind speed and isotachs for vertical velocity for 12:00

Wind Speed Sensitivity to Urban roughness and Urban Heat Island

Вертикальные профили 'локальной' скорости трения в центре урбанизированной области, нормализованные на ее максимальное значение. Символами различной конфигурации показаны данные измерений: ◆ - Rotach M., ■ - Oikawa and Meng, ▲ - Feigenwinter C. Линия **1** - =3 м/сек, линия **2** - =5 м/сек. Вертикальная координата нормализована на среднюю высоту зданий в урбанизированной области. 24

Вертикальные профили отношения u_{*}/U

Вертикальные профили отношения локальной скорости трения к средней скорости горизонтального ветра в центре урбанизированной области. Символы- данные измерений различных авторов

Вертикальный профиль стандартного отклонения для вертикальной скорости в центре урбанизированной поверхности. Линия 1 – моделирование при скорости $U_G = 3$ м/сек, линия 2 – моделирование при скорости $U_G = 5$ м/сек. Символами нанесены данные измерений.

Tank you for your attention!

