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Biochemistry model for O2, CO2, CH4
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Testing applicability of 1D model approach for the lake
Model performance in lake temperature and gases concentrations
Estimates of possible contribution of basin-scale seiches to the vertical gas
transport
Outlook
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Freshwaters in global carbon cycle

Total freshwater methane emission is 104 Tg yr−1, i.e. 50% of global wetland
emission (177-284 Tg yr−1, IPCC, 2013)
greenhouse warming potentials from freshwater-originating CO2 and CH4 are
roughly equal
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(Tranvik et al. 2009) (Bastviken et al. 2011)



CH4 and CO2 production and vertical transport in a lake

Vertical gas transport mechanisms:
Ebullition

Surface mixed-layer turbulence → driven by wind forcing and surface heat
balance

Thermocline → very strong stratification with intermittent turbulence. Possible
mixing mechanisms are K-H instability, nonlinear wave breaking, and marginal
shear induced by seiches.

Hypolimnion → governed by gravity currents and seiche-induced turbulence

Typical summer stratification in a temperate lake

High CH4 production in shallow sediments

Low CH4 production in deep sediments
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Thermodynamics and hydrodynamics of LAKE model
1D version

Stepanenko et al. (MSU) Lake greenhouse gas modeling Tomsk, Russia, June 2015 5 / 26

1D heat and momentum equations

k − ε turbulence closure

Monin-Obukhov similarity for surface
fluxes

Beer-Lambert law for shortwave
radiation attenuation

Momentum flux partitioning between
wave development and currents
(Stepanenko et al., 2014)

Soil heat and moisture transfer
including phase transitions

Multilayer snow and ice models (not
relevant in this study)

1D concept does not suffice the greenhouse
gas modeling task, as it does not take into
account differences between CH4 & CO2
emissions at deep and shallow sediments



Extended (1D+) modeling framework
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Traditional 1D model concept

1D+ model concept

1D+ model includes friction, heat and mass exchange at the lateral boundaries

Heat, moisture and gas transfer are solved for each soil column independently

In 1D+ model horizontally averaged quantity f obeys the equation:

∂f

∂t
=

1
A

∂

∂z
A kf

∂f

∂z
+ F (z, t, f, A ) + Hf

1
A

dA

dz
.



Soil columns in the model
Horizontal projection

Soil columns are geometric figures of the same vertical dimension confined by
adjacent isobaths in horizontal:
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Coupling 1D+ lake model to soil columns
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Boundary conditions:
at soil-water interface

Continuity of
temperature (gas)

Continuity of flux



Parameterization of barotropic seiches

Lake surface
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Vertical cross-section, y = 0
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Mass conservation

{
dhN
dt

A0(t) = − dhS
dt

A0(t) = 2
∫ 1

0 vLW−Ehdξ,
dhE
dt

A0(t) = − dhW
dt

A0(t) = 2
∫ 1

0 uLS−Nhdξ,

Barotropic pressure gradient force

{
g ∂hs
∂x

≈ gπ2

4
hE−hW
LW−E,0

,

g ∂hs
∂y

≈ gπ2

4
hN−hS
LS−N,0

.

Barotropic
(surface) seiches
are lake surface
and related
velocity oscillations
after strong wind
events.

Surface oscillations in the model

Turbulent kinetic energy profile
(modeled), June 2013, Kuivajarvi
Lake, seiches produce TKE near
bottom



Biochemistry of the model

O2

CO2 CH4

Biochemical
oxygen
demand
(BOD)

Sedimentary
oxygen
demand
(SOD)

Photosynthesis

Respiration

Methane
oxidation

Methane
production

Turbulent diffusion

Bubble transport
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Photosynthesis,
respiration and BOD are
empirical functions of
temperature and Chl-a
(Stefan and Fang, 1994)

Oxygen uptake by
sediments (SOD) is
controlled by O2
concentration and
temperature (Walker and
Snodrgass, 1986)

Methane production
∝ P0q

T−T0
10 , P0 is

calibrated (Stepanenko et
al., 2011)

Methane oxidation follows
Michaelis-Menthen
equation

Sinks and sources of gases in a lake



Bubble model

Ci

Mi, Pi

vb

rb

dissolution, exsolution
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For shallow lakes (several meters), bubbles reach water surface
not affected, for deeper lakes bubble dissolution has to be taken
into account.

Five gases are considered in a bubble:
CH4, CO2, O2, N2, Ar

Bubbles are composed of CH4 and N2 when they are
emitted from sediments

The velocity of bubble, vb, is determined by balance
between buoyancy and friction

The molar quantity of i-th gas in a bubble, Mi, changes
according to gas exchange equation (McGinnis et al., 2006):

dMi

dt
= vb

∂Mi

∂z
= −4πr2

bKi(Hi(T )Pi − Ci).

Gas exchange with solution is included in
conservation equation for i-th gas :

∂Ci

∂t
=

1
A

∂

∂z
Ak

∂Ci

∂z
+

1
A

∂ABCi
∂z

+

F (z, t, Ci, A) + (HCi − BCi,b )
1
A

dA

dz
.

Methane ebullition
from different soil columns



Kuiväjärvi Lake (Finland)

Point of measurements
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Mesotrophic, dimictic lake

Area 0.62 km2 (length 2.6
km, modal fetch 410 m)

Altitude 142 m a.s.l.

Maximal depth 13.2 m,
average depth 6.4 m, depth at
the point of measurements
12.5 m

Catchment area 9.4 km2

Secchi depth 1.2 – 1.5 m



Observations
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Measurement raft

Footprint of the
raft measurements

Conducted since 2009 by University of
Helsinki

Ultrasonic anemometer USA-1, Metek
GmbH

Enclosed-path infrared gas analyzers,
LI-7200, LI-COR Inc.

Four-way net radiometer (CNR-1)

relative humidity at the height of 1.5 m
(MP102H-530300, Rotronic AG)

thermistor string of 16 Pt100 resistance
thermometers (depths 0.2, 0.5, 1.0, 1.5, 2.0,
2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 10.0
and 12.0 m)

Turbulent fluxes were calculated from 10 Hz
raw data by EddyUH software



Validity of 1D approximation for Kuiväjärvi Lake
Wedderburn and Lake numbers

W = g∆ρh2
1

ρ0u2
∗L

Running means

Wcr ≈ 1
2

Wedderburn
number

Shintani et al., 2010

LN = 2(zm−zv)V ρ0gh1
zvτA0L

LN,cr ≈ 1

Lake number

Imerito, 2015

Thermocline
displacement is

negligible compared
to mixed-layer depth
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Significance of Coriolis force for Kuiväjärvi Lake

Rossby deformation radius, λ = NH
f ≈

√
gρ−1

0 ∆ρ hML
f

The lake’s length
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Rotational effects
are comparable
with those of
stratification.



Water temperature

Mixed layer depth and surface temperature are well reproduced
Stratification strength in the thermocline is overestimated
Model results lack frequent temperature oscillations in the thermocline

Stepanenko et al. (MSU) Lake greenhouse gas modeling Tomsk, Russia, June 2015 16 / 26

Measurements Model



Oxygen

Seasonal pattern is well captured: oxygen is produced in the mixed layer
and consumed below
Oxygen concentration in the mixed layer is underestimated by 1-1.5 mg/l,
and more significantly during autumn overturn
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Measurements Model



Carbon dioxide

Seasonal pattern is simulated realistically: carbon dioxide is consumed by
photosynthesis in the mixed layer and produced in the thermocline and
hypolimnion
Sudden CO2 increase prior to autumn overturn is absent in the model
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Measurements Model



Methane

Methane starts to accumulate near bottom in the late summer when
oxygen concentration drops to low values
Surface methane concentration is very small leading to negligible diffusive
flux to the atmosphere, consistent with measurements
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Measurements Model



The effect of barotropic seiches on methane concentration

Neglecting barotropic seiches leads to TKE ≈ 0 below thermocline, less
oxygen flux from above and earlier accumulation of methane near bottom
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Control simulation Seiches excluded



Methane budget in the surface mixed layer

Mixed layer

The diffusive flux through thermocline is negligible compared to other terms
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Thermocline thickness
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Thermocline thickness is defined as a depth difference between 8 ◦C
and 14 ◦C isotherms



Internal seiches in Kuiväjärvi
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Temperature series at different depths

Power spectra of temperature fluctuations
at three depths in the thermocline,
maxima at T ≈ 5h and T ≈ 22h

Seiche modesInternal seiches
are oscillations
of thermocline
after strong
wind events.

The periods of
internal seiches
may be
calculated by
linear theory
(Münnich et al.,
1992)

d2W

dz2 +
(
N2

ω2 − 1
)
k2W = 0, W |z=0,H = 0.

The Kuivajarvi stratification in June 2013
(N2) and depth (12.5 m) yields T ≈ 7h
for V1H1 mode and T ≈ 21h for V2H1.



Internal seiche mixing parameterization in k − ε model
Goudsmit et al. 2002

Shear production is generalized to include seiches P = νtM
2 + Ps ;

TKE production by seiche-induced shear at lake’s margins

Ps = − 1−Cdiss
√
Cd,bot

ρw0cAb
γ 1
A
dA
dz
N2E

3/2
s , Es - seiche energy;

Seiche energy is derived from wind forcing: dEs
dt

= αA0ρaCd(u2 + v2)3/2− γE3/2
s

Stationary Richardson number (Burchard, 2002) may be derived for this case as
Rist = Pr∆cε21

∆cε23−ν−1
0 PrCs∆cε21(u2+v2)3/2 ≈ 0.30 for typical wind speed

Ri� 1
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The effect of additional mixing in the thermocline

Increasing minimal diffusivity 100 times improves thermocline thickness (in terms of
temperature) but strongly deteriorates oxygen and methane concentrations
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Control simulation Increased minimal
diffusion coefficient (100 ∗ λw0)



Conclusions and Outlook

-> The model constructed shows reasonable agreement with measurements in
temperature and gas dynamics, with the only unconstrained calibration
parameter (in methane production formula);

-> Some peculiarities of gas dynamics are not captured suggesting the significance
of factors missing in the model, e.g. advection from the lake’s catchment;

-> We show that in terms of gases concentrations the basin is comprised of mixed
layer and a hypolimnion with almost molecular diffusive exchange between;

-> Our results suggest no solid evidence for wave-induced mixing in the
thermocline at the whole-lake scale, however...

-> ... the lake is characterized by strong seiches, hinting at possibility of significant
role of internal wave breaking at its margins (Heiskanen et al., 2013).

A more rigorous approach to estimate transport mechanisms through thermocline
would involve 3D hydrodynamic code.
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