Lomonosov Moscow State University Faculty of Geography, Research Computer Center

Numerical study of water-atmosphere gas exchange for a boreal lake

Sofya Guseva, Victor Stepanenko

CITES - 2015

Objectives and the study site

- ✓ identification of the key factors influencing the rate of the flux and the concentration of greenhouse gases in a water and surface of lake
 ✓ object small (S = 9000 m²), shallow (to 2.6 m) probably thermokarst lake in place, called Seida (Komi Republic ≈ 70 km from Vorkuta)
- observation data was provided by University of Eastern Finland (*Lind*, 2009)
 • the main research tool – one-dimensional lake model LAKE (*Stepanenko et al.*, 2011)
 with biochemical part for methane emission calculation

Physical and biochemical processes in the lake body and at the surface

Aerobic methane oxidation (MO)

Sedimentary Oxygen Demand

Air-water gas exchange parameterizations

 \checkmark air-water gas transfer velocity, k, parameterizations :

- 1) wind-speed-based empirical parameterization (Cole and Caraco, 1998; Heiskanen, 2014) (frequently used for lakes): $k = 2.07 + 0.21 \cdot u^{1.7}$
- 2) small eddy model (*Lamont and Scott*, 1970; MacIntyre, 2010) :

 $k = b \cdot Sc^{-\frac{1}{2}} \cdot (\nu\varepsilon)^{\frac{1}{4}}$

- 3) film model (*Lewis and Whitman*, 1970) : $k = \frac{D}{\delta}$
- 4) solid wall model (*Deacon*, 1977):

 $k = 0.082 \cdot Sc^{-\frac{2}{3}} \cdot u_* \cdot \left(\rho_a / \rho_w\right)^{\frac{1}{2}}$

Model sensitivity to parameters and parameterizations

- significant sensitivity of model to variation of biochemical constants in methane aerobic oxidation
- model demonstrates great sensitivity to application air-gas exchange parameterizations

CITES - 2015

Lakes as source of methane

- CH₄ one of the most important greenhouse gases, effected on climate system
- ✓ global atmospheric methane
 concentration from 1978 to 2011 has
 increased ≈ to 1.5 times
- ✓ emission of CH₄ from lakes by different estimates is 6-16 % from natural biogenic sources (*Travnik et al.*, 2009)
- ✓ numerical modeling one of the main tools to estimate CH₄ fluxes

Lake model LAKE (Stepanenko, 2011)

WATER

✓ hydrodynamic equation
 ✓ turbulent closure equations k − ε

 one-dimensional model with boundary conditions at the water surface and at the bottom of the lake
 the first model, described all main greenhouse gases dynamics

thermodynamics equations for soil

Base model experiment

one-order in comparison with observation data

Variation of biochemical CH₄ oxidation constants

Day-average ebullition flux

of CH_4 at the lake surface

Variation O₂ diffusion constant at the lake bottom

Lake's concentration of CO_2 (mol/m³) profile (July - August)

- increasing concentration of CO₂
- distribution CO₂ to upper layers of water

Application of air-water gas exchange parameterizations in LAKE

great sensitivity of model to appliance of different gas exchange parameterizations

physically simple models of k: film model, solid wall model