Multiscale version of the global atmospheric SL-AV model

Tolstykh M.A.^{1,2}, Volodin E.M.¹, Fadeev R.Yu. ¹, Shashkin V.V.^{1,2}

1 – Institute of Numerical Mathematics RAS

2 – Hydrometcentre of Russia

The use of global atmospheric models

- Climate change modelling (*boundary value problem*).
- Numerical weather prediction (*initial value problem*):
 - -- Deterministic (2-10 days). Also providing boundary conditions.
 - -- Probabilistic (ensemble medium- and longerange (month-season) forecasts).
- Emerging: prediction for 1-10 years, a combination of boundary and initial value problem

Seamless prediction

- There is no artificial boundaries between the time scales (Shukla, 2006), (Hoskins QJ 2013).
- The model should be good in reproducing all time scales.
- UK Met Office Unified Model since 198x
- Cost of model development and code maintenance
 However:
- NWP and climate models have different error metrics.
- Different parameterizations can be used fro NWP and climate modeling.

Forecast Centre	2015	2016	2017	2018	2019	
(Country)	2013	2010	2017	2010		
ECMWF	T 1270I 127	T 2047 427	T 2047 427	T 2047 I 427		
(Europe)						
Met Office	17 km 70	17 km L70	Coupled O-A	Coupled O-A	Coupled O-A 12/25?km L120-200	
(UK)			12/25?km L120-200	12/25?km L120-200		
Météo France	T799c2 4 70	T119862 2 105	T1198c2 2 105	thd	thd	
(France)	179902.4 270	1119002.2 2103	1119002.2 2103	ibu	lbu	
DWD	13 km L90 (6.5 km	13 km L90	13 km L90	thd	thd	
(Germany)	in Europe)	(6.5km m Europe)	(6.5km in Europe)	ibu	lbu	
HMC Russia	0.72°x0.9° L28	0.18°x0.225°L51	0.18°x0.225°L51	0.18°x0.225°L51	thd	
	T169 L31;	1559 251,	T339 L63;	T339 L63;	isu	
NCEP	T878 L91 (7.5)	T878 L91 (7.5)				
(USA)	T574 L91 (16)	T574 L91 (16)				
СМС	(0.35°x0.23°) L80	Ying-Yang	Ying-Yang	Ying-Yang		
(Canada)	(0.14°x0.14°) L80	(0.03 x0.03) 2123		(0.03 X0.03) 2200		
CPTEC/INPE	20 km 96	20 km 96	10 km 96	10 km L128		
(Brazil)	20 KIII 190	20 KII 190	10 KIII 190			
JMA	T 959 I 60	T 959 I 100	T 959 I 100			
(Japan)		1,939 1100				
СМА	T _L 639 L60					
(China)	GRAPES	GRAPES	GRAPES	GRAPES		
	50 km L31	25 km L70	0.25 L70	0.25 L90		
КМА	25 km L70	17 km L70	17 km L70			
(Korea)						
ВоМ		47 kms 1 05	47 km 1 05			
(Australia)	AUUE35 25 KM L/U	17 KM L85	17 KM L85			

Global NWP models

- 15 in total (13 in the preceding slide + India and NRL (USA))
- 8 original (of own development)
- NCEP model is used in India, UKMO model is used in Australia and S. Korea, ECMWF model is used in China. ECMWF and Meteo-France model are of joint development with different parameterizations.
- Gradual reduction in number of spectral models. In 5 years, 3 spectral models disappeared models less (Australia, Brazil, S. Korea), China plans to switch to own non-spectral model soon.
- ECMWF declares transition to non-spectral model after 2020.
- 7 original models are semi-Lagrangian (recently NCEP)
- Typical horizontal resolution in 2015 20-30 km
- The leader is ECMWF with 15 km and 137 levels (planning 10 km this year)

Среднеквадратическая ошибка прогноза Н500 на 3 суток. Период: июль 2008 – август 2013.

Гидрометцентр: желтый. Внедрение ПЛАВ: февраль 2010; внедрение ЗДВар: апрель 2013.

Июнь-июль 2013: догнали DWD. Источник: http://apps.ecmwf.int/wmolcdnv/

Step: 72 RMSEF 500 hPa ff/n.hem/analysis

From preceding 2 slides:

- Borrowed models (S. Korea, Australia) always worse than originals in terms of forecast errors. Some borrowed models do not report their errors
- Introduction of SL-AV model into RHMC operational practice at the beginning of 2010 allowed to reduce the gap in errors between Russia and leading centres by factor of 2.

Global semi-Lagrangian atmosphere model SL-AV

(Semi-Lagrangian based on Absolute Vorticity equation)

- Finite-difference semi-implicit semi-Lagrangian dynamical core of own development: vorticitydivergence formulation, 4th order finite-differences at the unstaggered grid (Tolstykh J Comput Phys 2002)
- + set of parameterizations for subgrid-scale processes developed by ALADIN/ALARO consortium. In new versions, some freeware parameterizations are used – SW and LW radiation (CLIRAD SW and RRTM LW)
- Codevelopment of Institute of Numerical Mathematics Russian Academy of Sciences and Hydrometcentre of Russia
- More coautors: + A.V.Shlyaeva, N.N. Bogoslovskii,

A.Yu. Yurova

Model version	Resolution	SETTLS	Local mass - cons.	Radiatio n RRTM+ CLIRAD; aerosols	Microp hysics	Parallel.	Daily update of Bounda ry fields	Output fields
Operational «Seasonal»	1.4°x1.1°, 28 levels	-	-	-	-	OpenMP	+	CLIM
Operational «medium- range»	0.9°x 0.72°, 28 levels	+	-	-	-	OpenMP	-	OPER
Operational SibNIGHMI	0.5625° lon; from 28 to 80 km in latitude, 50 levels	+	-	-	-	MPI+ OpenMP	-	OPER
New «medium- range»	0.225° lon, from 27 km in South.Hem. to 18 km in North. Hem., 51 levels	+	+	+	+	MPI+ OpenMP	-	OPER
Unified	Arbitrary, choice from predefined	+	+	+	+	MPI+ OpenMP	+	CLIM or OPER

New NWP version of SL-AV model

- * Resolution 0.225° in longitude, in latitude form 27 km (South. Hem.) to 18 km (North. Hem.). The grid is generated by R.Yu. Fadeev (Russ. Comp.Math. Math.Phys.2013).
- * Orography is prepared at the reduced lat-lon grid.
- 51 vertical levels, 5 hPa top.
- For the first time in Russia, the world medium level of horizontal resolution is achieved in Northern hemisphere.
- Support of RFBR, RSCF, Mis. Of Educ. Grants.
- Time to calculate 24h forecast at RSC Tornado (Roshydromet): 24 min at 224 procs, 6 min at 864 procs.
- Accepted by Roshydromet comission 25/05/15.

Changes in new SL-AV model

- Locally-conservative approximations for gradient and divergence; accuracy near the poles is increased
- Parameterization of shortwave radiation CLIRAD SW (freeware).
- Parameterization of longwave radiation RRTM LW (freeware).
- 3D Ozone monthly mean climatology (ERA Interim).
- Sea salt, sand dust aerosol GISS climatology.
- Microphysics in non-convective clouds (ALARO).
- Vertical resolution is taken into account in clouds parameterization (ALARO).

Grid step in latitude (upper curve) and longitude (lower curve), in km

Proportion of 'physical' grid steps Max(dx/dy, dy/dx)

Vertical levels distribution: 50 levels (left), 28 levels (right).

Parallel acceleration of the SL-AV model with the resolution (0.16-0.24)°x0.225°, 51 levels (w.r.t. time at 54 procs). RSC Tornado

Developing multiscale version

- Merging different options and resolutions into a single code.
- Unified multiscale version has parameterization set from the new NWP version
- Two input/output options, for NWP and for climate changes modelling.
- Verification on medium range NWP- OK.
- First runs according to AMIP2 protocol.

RMS forecast errors for 11.04.2014-14.06.2015 with respect to analysis . Region: Europe, 12 UTC (SLAV – operational version, SLAV20 – new version)

RMSE, Po, Europe

RMSE, H-500, Europe

Analysis at 27.04.2015 00UTC and 24-h forecasts from 26.04.2015 00UTC

T339

Current (intermediary) results of climate modelling

- Resolution 0.9x0.72 degrees lon-lat, 28 levels
- AMIP2 protocol (SST and sea-ice fields prescribed, changing in time).
- Initial conditions for 01.01.1979 (ERA Interim).
- 5 years calculated so far.

Mean January 1979-1983 MSLP field

Mean January zonal wind: model (top), ERA (bottom)

Mean cloudiness: model (top), reanalysis (bottom)

MJO spectra: observations (top), INM climate model (bottom left), SL-AV model (bottom right)

Further plans

- Hybrid vertical coordinate, higher model top (up to 0.5 hPa)
- Cloud parameterization for climate changes modelling mode.

• Coupling to the INM global ocean models

Conclusions

- Multiscale (unified) version of the global atmosphere model SL-AV has been developed.
- NWP mode works reasonably well
- Further improvements are needed for climate changes modelling.

Thank you for attention!

Support of RSCF grant 14-27-00126 is gratefully acknowledged