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• Introduction: the role of land surface assimilation 

• Evolution of land surface assimilation from minimizing error to consistency  

• Frontiers of land surface assimilation towards parameter adjustment 
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Energy and Water budgets: the model perspective 

• The NWP model evolves the land surface state but 

introduces errors 

 

 

 

• The Data Assimilation (DA) corrects those errors at each 

cycle (when obs. Are available) to produce a better initial 

condition for next forecast 
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Energy and Water budgets: the data assimilation perspective 
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Extended / Ensemble  

Kalman Filter 

 

 

Extended / Ensemble  

Kalman Filter 

 

 

Simplified VAR/EKF Methods 

 

 

Simplified VAR/EKF Methods 

 

 

Variational 

 

 

Variational 

 

 

Optimal Estimation Theory 

 

 

 

Data Assimilation Techniques applied for Land Surface  
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L-band Tb 
C-band Tb C-band scat.     IR Ts 

EVOLUTION OF LAND SURFACE DATA ASSIMILATION SYSTEMS 

T/H 2m 

hourly 6-hourly 



L-band Tb 
C-band Tb C-band scat.     IR Ts 

OBSERVATIONS FOR SOIL MOISTURE ANALYSIS 

T/H 2m 

INFORMATIVITY on 

       LAND SURFACE 

2008/2012    AVAILABILITY                  now 

+ Large Information content 

+ Global Coverage 

+ Reduced Atmospheric Contrib. 

-Not Available ‘till 2009 

+ Large Information content 

+ Global Coverage 

+ Reduced Atmospheric Contrib. 

-Not Available ‘till 2009 

+ Global coverage 

+ Relatively reduced 

Atmospheric contrib. 

- RFI 

- Vegetation masking 

VCW>1kg/m2 

+ Global coverage 

+ Relatively reduced 

Atmospheric contrib. 

- RFI 

- Vegetation masking 

VCW>1kg/m2 

+ Large coverage 

 

- Cloud Masking 

- Model Bias 

+ Large coverage 

 

- Cloud Masking 

- Model Bias 

+ Wide validation 

-Coverage 

-Variable 

Information 

Content 
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The ECMWF Integrated Forecasting System (IFS)  
data assimilation system  

From L. Isaksen's training courses 
http://www.ecmwf.int/newsevents/training/meteorological_presentations/MET_DA.html 

 The observations are used to correct errors in the short forecast from the 
previous analysis time. 

 Every 12 hours we assimilate 7 – 9,000,000 observations to correct the 
80,000,000 variables that define the model’s virtual atmosphere. 

 This is done by a careful 4-dimensional interpolation in space and time of the 
available observations; this operation takes as much computer power as the 10-
day forecast. 

(10-day)‏ 

Data Assimilation System: 
Provides best possible accuracy of 
initial conditions  
to the forecast model 
 
Analysis: 
- 4D-VAR for atmosphere  
- Surface analysis 
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Surface analysis at ECMWF 

 
  
 

 
Ocean surfaces: 

• Sea Surface Temperature (SST) and sea ice (2D interpolation, based on OSTIA)  

• Sea surface salinity (global constant for medium-range forecast)  

Land surfaces: 

• Snow  

• Uses SYNOP Snow depth corrected according to NOAA/NESDIS snow cover 

• Cressman (until 2010), Optimum Interpolation (OI) since  2010  

• Screen level parameters: OI 2m air Relative humidity and air Temperature SYNOP  

• Soil moisture and soil/snow temperature:  

-OI using 2m air Relative humidity and air Temperature (1999-2010) 

- OI (1999-2010), Extended Kalman Filter (EKF) since 2010  

 

Recent advances at ECMWF focus on: 

 Soil moisture analysis improvements (EKF) and use of satellite data (ASCAT and  SMOS)  

 Snow analysis new OI scheme  

 



T_2m RH_2m 

SYNOP  

OBS 

Screen level analysis (OI) 

T_2m RH_2m 

 

 
𝜎𝑜

𝑇2𝑚 = 2𝐾 𝜎𝑜
𝑅𝐻2𝑚 = 10% 

ASCAT SM  

Satellite 

OBS 

Soil Analysis (SEKF) 

Soil Moisture L1, L2, L3 
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𝑅𝐻2𝑚 = 4% 
𝜎𝑏 = 0.01 𝑚3𝑚

_3 

NWP Forecast 

Coupled Land-Atmosphere 

T_2m RH_2m bg 

Soil Moisture layers L1,L2,L3 bg 

Jacobians, screen obs operator 

Soil Analysis in the IFS 

IFS cycle 41r2 

 Operational soil moisture data assimilation: combines SYNOP and satellite data 

 



Snow Analysis 

Snow Quantities:      
 
- Snow depth SD (m)  
             - Snow water equivalent SWE (m)  
 - Snow Density ρ

s
, between 100 and 400 kg/m3  

  
 
 
 
Observation types:  
- SYNOP: snow depth (SO)   
- Satellite: Snow extent (NOAA/NESDIS)  
 
 
Background variable used in the snow analysis:  
- Snow depth Sb  

                (computed from forecast SWE and SD)  
               

1000

SSD
SWE


 [m] 



NOAA/NESDIS Snow extent data 
Interactive Multisensor Snow and Ice Mapping System: 
-  Time sequenced imagery from geostationary satellites, 
-   AVHRR,  
-   SSM/I,  
-   Station data,  
-   Previous day‘s analysis 
 
Northern Hemisphere product 
-   Daily 
-   Polar stereographic projection 
 
Resolution: 
- 24 km product  (1024 × 1024) 
-   4 km product (6044 x 6044) 
 
Information: 
Snow or Snow free 
 
Format: Since Nov. 2010, use ASCII  
product at 4km 
 
More information at: http://nsidc.org/data/g02156.html 
 
 

http://nsidc.org/data/g02156.html
http://nsidc.org/data/g02156.html


The snow analysis at ECMWF 

A 

2004: use of the IMS 24km product (Drusch et al.) 

Snow analysis uses SYNOP snow depth data and 
NOAA/NESDIS IMS snow cover 
 
2010 implementation: 
- New Snow analysis based on the Optimum 
Interpolation with Brasnett 1999 structure functions 
 
-A new IMS 4km snow cover product to replace the 
24km product 
 

-Improved QC (monitoring, Blacklisting)  
 

(de Rosnay et al., 2011) 
 
 

Number of SYNOP data used in the Analysis in January 2010 



GTS SYNOP Snow depth availability 

 

Operational snow observations monitoring 

(SYNOP TAC + SYNOP BUFR + national BUFR data): 

http://old.ecmwf.int/products/forecasts/d/charts/monitoring/conventional/snow/ 

Status on 1 March 2016 

For regional renalayses: 

Some regions don’t have 

observations! 

 Importance of regional data 

rescue 

WMO Members States encouraged to put their snow depth data on the GTS  

 BUFR template for national data approved by WMO in April 2014 

 WMO GCW Snow Watch initiative on snow reporting, (Brun et al 2013) 

Snow Observations 



Impact of the snow analysis method 
 

OI Brasnett 1999 +4km NESDIS 

- OI has longer tails than Cressman and considers more observations.   

-- Model/observation information optimally weighted by an error statistics. 

Cressman +24km NESDIS 

 
Cressman 

 

 

 

 

 

 

 

OI 

 



 Consistent improvement of snow and 
atmospheric forecasts 

Impact on atmospheric forecasts  

October 2012 to April 2013 (RMSE new-old) 

Snow analysis impact 

Revised IMS snow 

cover data 

assimilation 

Impact on snow October 2012 to April 2013 

(using 251 independent observations) 



Screen Level parameters analysis 
      2m  Air Temperature (T) and 2m Relative humidity (RH) Analyses based on an  
Optimum Interpolation using SYNOP observations, every six hours: 0, 6, 12, 18UTC. 
 
 1. Increments Xi are estimated at each observation location i from the  
 observation and the interpolated background field (6 h or 12 h forecast).  

2. Analysis increments Xj
a at each model grid point j are calculated from:  
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3. The optimum weights wi are given by: (B + O) w = b 

b : error covariance between observation i and model grid point j  
     (dimension of N observations)  

B : error covariance matrix of the background field  (N × N observations)  
      B(i1,i2) = 2

b ×(i1,i2) with the horizontal correlation coefficients (i1,i2)  
      and b = 1.5 K / 5 % rH the standard deviation of background errors.  
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O : covariance matrix of the observation error (N × N observations): 
      O = 2

o × I with o = 2.0 K / 10 % rH the standard deviation of  obs. errors 



Screen Level parameters analysis (2) 

• Number of observations N = 50,  d = 300 km, scanned radius 1000km. 

• Gross quality checks as rH  [2,100] and T > Tdewpoint 

 

• Observation points that differ more than 300 m from model  
 orographie are rejected. 

1. Observation is rejected if it satisfies:                                 with  = 3 (tolerance)  

 

1. Number of used observations ~  6000 (40% of the 
     available observations) every 6 hours. 
 
6. Increments are computed 
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Optimum Interpolation land surface analysis 
(oper. surface analysis at Météo-France/MSC/ECMWF…) 
      Mahfouf 1991, Bouttier 1993, Giard and Bazile 2000, Mahfouf et al. 2003, Belair et al 2003 

Sequential analysis (every 6h) 

Correction of surface parameters (Ts, Tp, Ws, Wp) using 2m increments between analysed and forecasted 

values 

Optimum Interpolation of T2m and RH2m using SYNOP observations interpolated at the model grid-point (by a 

2m analysis) 

T2m 

t 

Wp 

t 

RH2m 

t 

6-h        12-h         18-h         0-h 

Tuning of the OI statistics and regressions and  

accuracy of 2m analyses are key components 

T2m = T2m
a - T2m

f RH2m = RH2m
a - RH2m

f 

Ts
a - Ts

fT2m
 

Tp
a - Tp

fT2m / 2p 

Ws
a - Ws

faWsT T2m + aWsRH RH2m 

Wp
a - Wp

faWpT T2m + aWpRH RH2m 

aWp/sT/RH = f (t, veg, LAI/Rsmin, texture, atm.cds.) 
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Variational surface analysis 
Mahfouf (1991), Callies et al. (1998), Rhodin et al. (1999), 

Bouyssel et al. (2000), Hess (2001), Seuffert et al. (2004), Balsamo et al. (2004) 

 

 

 Formalism: 

 

 

 

 

 

x  is the control variables vector 
y  is the observation vector 
H   is the observation operator 

Continuous analysis 

T2m 

t 

Wp 

t 

RH2m 

t 

6-h        12-h         18-h         0-h 

The analysis is obtained by the minimization of the cost 

function J(x) 

B is the background error  

covariance matrix 

R is the observation error  

covariance matrix 

= ½ (x – xb) T B-1 (x – xb) + ½(y – H(x))T R-1 (y – H(x)) 

J(x) = J b(x) + J o(x) 

Advantages:  Easier assim. asynop. obs. 

Extension on longer assim. Window (24-h) 



Why an EKF soil moisture analysis ? 

- Dynamical estimates of the Jacobian Matrix that quantify accurately the physical relationship between 

observations and soil moisture  

- Flexible to account for the land surface model H-TESSEL evolution 

- Makes it possible to combine different sources of information 

- Possible to investigate the use of new generation of satellite data: 

 - SM active microwave (C-band ERS, MetOp/ASCAT, L-band SMAP)  

 - SM passive microwave (L-band SMOS, SMAP)  



EKF soil moisture analysis  

For each grid point, Analysed soil moisture state vector θa: 

 

θa= θb+ K (y-H θb) 

 

θb  background soil moisture state vector,  

H Jacobian matrix of the observation operator 

    Estimated in finite differences (perturbed simulations) 

y observation vector  

K the Kalman gain matrix, fn of H and covariance matrix of background Bg and 

observation errors R.  

 

Observation can be: 

• Conventional observations (T2m, RH2m) 

• Satellite data related to soil moisture (e.g. ASCAT product, SMOS). 

 

  

H-TESSEL 
(Balsamo et al., 2009) 

EKF  corrects the trajectory of the  
Land Surface Model 

SYNOP                 ASCAT           SMOS 
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OI 

|SEKF|-|OI| 

EKF evaluation 
0-1m Soil Moisture increments for July 2009 (mm)‏ 

- EKF accounts for (non-linear) control on the soil moisture increments (meteorological forcing and soil moisture 

conditions) 

- Prevents undesirable and excessive soil moisture corrections, and reduces the soil moisture analysis increments.  

- Improves soil moisture (Albergel et al., Brocca et al., Roulin et al., Su et al.) 
 

SEKF 



Profile of Soil Moisture increments 
difference |SEKF|-|OI| July 2009 

 

Layer 1 (0-7cm) 

Layer 2 (7-28cm) 

Layer 3 (100-289 cm) 

Increments reduction: mainly at depth 
 

EKF Comparison/validation 



   Impact on 2-meter Temperature 

 

Global mean RMS (against SYNOP) 

T2m error (OI-SEKF) 
 EKF improves T2m 

 

- EKF consistently improves SM & T2m 

- EKF implemented in 2010 in operations 

- Makes it possible to assimilate satellite data to analyse 

soil moisture 
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Active microwave remote sensing 

                       ERS-1/2 scatterometer data and MetOp ASCAT 

- Active microwave instruments operating at C-band (5.6GHz) 

- ERS-1: August 1991 – May 1996 

- ERS-2: March 1996 – January 2001 and May 2004 – now 

- MetOp ASCAT (EUMETSAT): 

   November 2006 – now. Near Real Time (NRT)  

   surface soil moisture index (ws) based on the  

TUWien retrieval scheme (Wagner et al. 1999) 

 

ASCAT: First operational SM product 

 

http://www.ipf.tuwien.ac.at/radar/index.php?go=ascat 

H-SAF Project: http://www.meteoam.it/modules.php?name=hsaf 

ERS/MetOp SM: 



 
Active microwave remote sensing 

 
Correlation of ERS and ERA-40 SM abs. values and anomalies 

ASCAT provides good SM information in semi-arid  

and moderately vegetated area. 

 

 

General good agreement between ERS and ERA-40 soil 

moisture products. 

 

For 85% of  the land points, correlation is significant at the 

0.05 level. 

 

High correlation where strong SM seasonal cycle (e.g. 

monsoon regions). 

 

 

Relatively low correlation in the eastern part of the North 

America (high amount of biomass). 

 

 

 

Scipal et al., ADWR 2008 



 

Use of ASCAT SM data at ECMWF 

                        

CDF-matching coefficients ASCAT_rescaled = a+ 

b*ASCAT/100  

T1279 (16km) resolution 

 

de Rosnay, ECMWF Res. Mem, 2009 

Bias correction 
- Simplified CDF matching (Mean and Range) 
- Matching uses 9 years of data (1992-2000) 
- Biases are estimated for each point separately  



H-SAF (Hydrology Satellite Application Facility) 

• Assimilation of ASCAT SSM in the IFS using the SEKF 

•  Root zone Soil Moisture profile 

• July 2008 - August 2010 daily data 

Layer 1: 0-7 cm 

Layer 3: 28-100 cm 

Layer 2: 7-28 cm 

ASCAT data assimilation   



Passive microwave remote sensing 
 

Soil Moisture and Ocean Salinity mission 

ECMWF contribution: 
 
- Global monitoring 
- Data assimilation  
  (Brightness Temperatures, TB). 
 
 
A Key component of TB monitoring and assimilation 
is the forward operator that transforms model 
variables (eg soil moisture and temperature) into 
observed variable (SMOS TB)  
 
 

ESA SMOS launched on 2nd of November 2009 



 

Passive microwave remote sensing 

Past current and future missions: 

 

SMOS (Soil Moisture and Ocean Salinity Mission): ESA Earth Explorer,        L-band (1.4 GHz), launched 

November 2009 

 

SMAP (Soil Moisture Active and Passive), NASA, L-band, launch 2015 

 

AMSR-E (Advanced Scanning Radiometer on Earth Observing System), NASA,                   C-band (6.9GHz), 

2002-now 

 

Skylab, NASA, L-band, 1973-1974 (but only 9 overpasses available) 

 

 

 

SMOS: first satellite missions specifically devoted to soil moisture remote sensing. 



The Community Microwave Emission Model 

http://www.ecmwf.int/research/ESA_projects/SMOS/cmem/cmem_index.html 

References: 
Drusch et al. JHM, 2009 
de Rosnay et al. JGR, 2009 
Muñoz Sabater et al., IJRS 2010 

• SMOS forward operator at ECMWF. 

• I/O interfaces for the Numerical Weather Prediction Community. 

• CMEM Input/Output interface is flexible: grib (gribex, gribAPI), netcdf, ascii. 

• CMEM is a Fortran 90 software, portable for unix/linux systems 

• Web interface available 

Tool for the ESA SVRT (SMOS Validation and 
Retrieval Team) 



de Rosnay et al., JGR 2009 

 
 

AMSR-E and  
8 LSMs 

 
 

 CMEM configuration with 
Wang&Schmugge 

+ Kirdyashev 
 

Bias correction  
Applied for each LSM 

- Time-latitude wet Patch 
well captured by most  
LSMS 
 
 
 
 
 
 

Time-Latitude diagram of TBH 



SMOS monitoring 

http://www.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/smos/  

First Guess Departure (Obs-Model) Incidence 40°, TBYY 



ECMWF reanalyses based on   

Integrated Forecasting System (IFS)  

 

 
 Model: GCM including the H-TESSEL land surface model 

 Fully coupled land-atmosphere (for NWP, ERA-Interim, ERA5) 
 HTESSEL offline (ERA-Interim Land, ERA5L), forced by the atmospheric conditions 

 
 Data Assimilation: for NWP, ERA-Interim, ERA5; weakly coupled DA  

- 4D-Var for atmosphere  
- Land Data Assimilation System 
 

Systems Model Coupling Land Data 

Assimilation 

Resolution/ 

Domain 

 NWP IFS yes Yes cycle 41r2 9km/Glob 

ERA-Interim IFS yes Yes cycle 31r1 79km/Glob 

ERA-Interim Land H-TESSEL no No  79km/Glob 

ERA5 IFS yes Yes cycle 41r2  32km/Glob 

ERA5 Land H-TESSEL no No 9km?/Glob 

http://www.ecmwf.int/newsevents/training/meteorological_presentations/MET_DA.html


October 29, 2014 

Summary and Outlook 

• Data assimilation systems are designed to constrain model errors and improve the 
forecasts 

• Data assimilation systems are also ideal tools to validate parameterizations because of 
their constant confrontation with observations  

• Forecast systems are sensitive to mis-representation of longer time scales in the land-
surface/atmosphere interaction, therefore DA is also interesting for tuning parameters.  

• Efforts up to present towards reduce atmospheric errors 

• Moving towards Earth System for Environment prediction & Extended-range requires: 

– An increased attention to the consistency of water and energy cycle applying DA increments 

– A better use of EO data in data assimilation methods that can tune parameters 

– A large collaborative efforts (@ECMWF and within the NWP & Climate community) 

 

 


