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Model equations

 Incompressible fluid on domain 0,2𝜋 × [0,2𝜋) with periodic b.c.

 Biharmonic damping −𝜇∆2𝜔

 Raleigh friction −𝛼𝜔

 Stochastic forcing  𝑓 of fixed spatial scale with wavenumber 𝑘𝑓 = 90

𝜕𝜔

𝜕𝑡
+ 𝐽 𝜓,𝜔 = −𝜇∆2𝜔 − 𝛼𝜔 + 𝑓

∆𝜓 = 𝜔

where 𝜓 – stream function, 𝜔 – vorticity



Numerical schemes

• E, skew-symmetric energy-conserving scheme
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• INMCM, one of Arakawa schemes (Arakawa, 1977)
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• Z, skew-symmetric enstrophy-conserving scheme (Arakawa, 1966)

• CCS, finite volume Semi-Lagrangian scheme (Nair, 2002)



Theory KLB(Kraichnan-Leith-Batchelor)

 Enstrophy (𝑍 =
1

2
 𝜔2𝑑𝑥) moves to 

small scales

 Energy (𝐸 =
1

2
 𝑢2𝑑𝑥) moves to 

large scales



Summary of previous work 

 Importance of numerical schemes properties depends on resolution 

 All coarse models fail in the case of small scale forcing

a) large scale forcing b) small scale forcing



A priori analysis of subgrid forces

Dynamics of coarse model is represented by filtered equations (spectral

filtration denoted by overline):
𝜕 𝜔

𝜕𝑡
+ 𝐽ℎ  𝜓,  𝜔 = ⋯+ 𝜎

where 𝜎 – subgrid forces accounting for unresolved scales and numerical

approximation 𝐽ℎ ∗,∗ :

𝜎 = 𝐽ℎ  𝜓,  𝜔 − 𝐽 𝜓,𝜔

We run high resolution model 2160 × 2160 and gather statistics of subgrid

forces for coarse models 360 × 360.

Forcing scale is 4 mesh steps of coarse model (𝑘𝑓 = 90, 𝑘𝑚𝑎𝑥 = 180).



Spectral properties of subgrid forces

• rhs spectrum of advection in large scales is well represented by all coarse models

• subgrid energy generation is comparable with forcing power and injects energy into the

large scales (backscatter)

On short time intervals coarse models reproduce large-scale variability well. However during

long time integration the absence of backscatter parametrization leads to the slow decay of

large scale flows, and inverse energy cascade eventually breaks.



stochastic

Ornstein-Uhlenbeck stochastic process in Fourier space (Berner, 2009).

Decorrelation time and energy generation of subgrid forces are simulated by

adjusting constants 𝛽𝑘 and 𝛾𝑘.
𝜕𝜔𝑘
𝜕𝑡
= ⋯+ 𝑠𝑘

𝜕𝑠𝑘
𝜕𝑡
= −𝛽𝑘𝑠𝑘 + 𝛾𝑘𝜀𝑘 𝑡

where 𝜀𝑘 𝑡 − white noise with unit variance

Backscatter parametrizations - 1



eddy viscosity

Linear model in Fourier space (Kraichnan 1976). Energy generation of subgrid

forces is simulated by adjusting negative coefficient 𝜈 𝑘 .

𝜕𝜔𝑘
𝜕𝑡
= ⋯− 𝜈 𝑘 𝑘2𝜔𝑘 , 𝜈 𝑘 < 0

Backscatter parametrizations - 2



𝜕𝜔

𝜕𝑡
= ⋯+ 𝑐𝑠𝑖𝑚

 𝜕𝑙𝑗

𝜕𝑥𝑗
𝑙𝑗 =  𝑢𝑗 𝜔 −  𝑢𝑗𝜔

Here  (⋅) – test filter of width twice the

mesh step,  (⋅) – additional spectral

filter that remove scales smaller then

forcing scale.

 Scale similarity model reproduce

shape of energy backscatter

spectral distribution

A priori analysis of scale similarity model



stochastic+similarity

Combined model incorporating stochastic and deterministic parts. Constants

𝑐𝑠𝑡𝑜𝑐ℎ and 𝑐𝑠𝑖𝑚 are adjusted in series of preliminary experiments with coarse

model and chosen to fully compensate energy loss due to viscosity and

scheme dissipation. Also, distribution of energy generation between stochastic

and deterministic parts implemented in such a way as to get best results in

large and middle scales at the same time.

𝜕𝜔

𝜕𝑡
= ⋯+ 𝑐𝑠𝑡𝑜𝑐ℎ𝑠 + 𝑐𝑠𝑖𝑚

 𝜕𝑙𝑗

𝜕𝑥𝑗
𝑙𝑗 =  𝑢𝑗  𝜔 −  𝑢𝑗𝜔

Here  (⋅) – test filter of width twice the mesh step,  (⋅) – additional spectral filter

that remove scales smaller then forcing scale.

Backscatter parametrizations - 3



Experiments with coarse models - 1

 Stochastic and eddy viscosity 

models effectively restore 

large scales

 Scale-similarity model restores 

middle scales (not shown)

 Combined model gives the 

best result: full inertial range of 

energy cascade was restored

Fig. 2. Energy spectrum for different schemes (E, INMCM, Z, CCS).



Experiments with coarse models - 2

Fig. 3. Stream function patterns for scheme E.

 Large scale flows emerged



Experiments with coarse models - 3

 Autocorrelation functions of solution and advection rhs were restored

Fig. 4. Autocorrelation functions of Fourier coefficients for 𝑘 = 30, scheme E.



Experiments with coarse models - 4

 Time averaged response to the small constant perturbation (sensitivity) has 

true extreme values for combined model (shown results is for scheme E)



Experiments with coarse models -5

 Error of time averaged response reduces for 5-7 times in ∙ ∞ norm and for 

3-4 times in ∙ 2 norm



Conclusions

• Parametrizations reproduce inverse energy cascade (energy spectrum,

stream function patterns, autocorrelation functions)

• These improvements in dynamics are due to restoration of internal

variability (parametrizations are small in norm compared to rhs)

• Stochastic and eddy viscosity parametrizations give almost the same results

however average response for eddy viscosity model is quite worse. Also it

could be unstable (scheme Z).

• Combined model (stochastic+similarity) gives the best results and

demonstrates restoration of energy spectrum in middle and large scales at

the same time. Also it has the best sensitivity among all the investigated

parametrizations.


