HYDROMETEOROLOGICAL CENTRE OF RUSSIA

About weather—at first hand

Использование коррелированных ошибок спутниковых данных наблюдений AMV в ансамблевой системе усвоения данных на основе LETKF

Мизяк В.Г.¹, Шляева А. В.², Рогутов В.С.¹, Толстых М. А.^{1,3} ¹Гидрометцентр России, Москва ²Cooperative Institute for Research in Environmental Sciences, Boulder, USA ³ИВМ РАН, Москва vmizyak@mecom.ru, shlyaeva@gmail.com, tolstykh@m.inm.ras.ru, rogutovv@mail.ru

CITES – 2017, г. Таруса, г. Звенигород

Усвоение данных

Задача: подготовка начальных данных для численного прогноза погоды Решение: оптимальная оценка состояния атмосферы (т.н. анализ) χ^a Входные данные:

V⁰ вектор размерности •данные наблюдений •первое приближение

•ошибки наблюдений

$$x^{b}_{-}$$
 вектор размерности n

$$n: \begin{pmatrix} 10^5 & 10^7 \\ m: \begin{pmatrix} 10^6 & 10^8 \end{pmatrix}$$

$$o = y^o \quad H(x^t): N(0,R)$$

•ошибки первого приближения

$$y = x^b \quad x^t : N(0, P^b)$$

•Фильтр Калмана – вектор анализа

$$x^a = x^b + \mathbf{K} \quad y^o \quad H(x^b)$$

•весовая матрица

$$\mathbf{K} = \mathbf{P}^{b} \mathbf{H}^{T} \left(\mathbf{R} + \mathbf{H} \ \mathbf{P}^{b} \mathbf{H}^{T} \right)^{1}$$

Local Ensemble Transform Kalman Filter¹

- локализация наблюдений:
 - усвоение только наблюдений из радиуса локализации с весом, зависящим от расстояния до точки сетки
 - независимое вычисление анализа в разных точках сетки высокая степень параллелизма по данным
- использование ансамбля прогнозов для аппроксимации $\mathbf{P}^{b} = \frac{1}{k-1} \mathbf{X}^{b} \mathbf{X}^{bT}$
- переход в пространство ансамбля → решение задачи → обратный переход
- ансамбль анализов можно использовать для ансамблевого прогноза

¹B. R. Hunt, E. J. Kostelich, and I. Szunyogh. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena, 230(1-2):112–126, June 2007.

Спутниковые наблюдения ветра AMV

- получают путём сопоставления спутниковых изображений и отслеживания движения одинаковых структур на двух или нескольких последовательных снимках
- измеряют скорость и направление ветра в атмосфере
- имеют глобальное покрытие и являются источником информации о ветре над акваторией океанов, в тропиках и в полярных регионах
- ошибки наблюдений имеют пространственную и временную корреляцию между собой (радиусы корреляций 600-800 км)⁴
- отсутствие учёта корреляций ошибок наблюдений приводит к ухудшению качества получаемых анализов⁵

возможный выход – использование коррелированных ошибок (недиагональная матрица R)

2N. Bormann, S. Saarinen, G. Kelly, J.-N. Thepaut. – The spatial structure of observation errors in Atmospheric Motion Vectors from geostationary satellite data. – 2003, QJRMS, 131, pp. 706-718

³G. Desroziers. – Observation error specification. – 2012, Presentation at International Summer School on Data Assimilation, Les Houches, France

Наличие корреляций в ошибках наблюдений AMV

 авторегресионная функция второго порядка (англ. Second Order Autoregressive function, SOAR)⁴:

$$R_{ij} = R(r_{ij}) = R_0 \quad 1 + \frac{r_{ij}}{L} \quad e^{-\frac{r_{ij}}{L}}, i = \overline{1, nloc}, j = \overline{1, nloc}$$

- полагается отсутствие между корреляциями в ошибках наблюдений, полученных с различных спутников и каналов
- Ro и L задаются разными для различных спутников, каналов и регионов настроечные параметры

⁴Stewart L. M., Dance S. L., Nichols N. K. Correlated observation errors in data assimilation //International journal for numerical methods in fluids. – 2008. – T. 56. – №. 8. – C. 1521-152

Наличие корреляций в ошибках наблюдений AMV

		NH	Tropics	SH
GOES – 13/15	Above 400 hPa	<i>R</i> ₀ = 0.35, <i>L</i> = 200 km	<i>R₀</i> = 0.27, <i>L</i> = 340 km	<i>R</i> ₀ = 0.37, <i>L</i> = 170 km
	400 – 700 hPa	<i>R</i> ₀ = 0.42, <i>L</i> = 210 km	<i>R₀</i> = 0.29 <i>, L</i> = 280 km	<i>R</i> ₀ = 0.43, <i>L</i> = 190 km
	Below 700 hPa	<i>R</i> ₀ = 0.40, <i>L</i> = 210 km	<i>R</i> ₀ = 0.30, <i>L</i> = 310 km	<i>R</i> ₀ = 0.41, <i>L</i> = 200 km
METEOSAT-7	Above 400 hPa	<i>R</i> ₀ = 0.29, <i>L</i> = 170 km	<i>R₀</i> = 0.29, <i>L</i> = 180 km	<i>R</i> ₀ = 0.31, <i>L</i> = 190 km
	400 – 700 hPa	<i>R</i> ₀ = 0.44, <i>L</i> = 130 km	<i>R₀</i> = 0.30, <i>L</i> = 190 km	<i>R</i> ₀ = 0.35, <i>L</i> = 160 km
	Below 700 hPa	<i>R</i> ₀ = 0.50, <i>L</i> = 210 km	<i>R</i> ₀ = 0.33, <i>L</i> = 180 km	$R_0 = 0.41, L = 230 \text{ km}$
METEOSAT-9	Above 500 hPa	<i>R</i> ₀ = 0.25, <i>L</i> = 140 km	<i>R₀</i> = 0.29, <i>L</i> = 170 km	<i>R</i> ₀ = 0.28, <i>L</i> = 150 km
	500 – 700 hPa	<i>R</i> ₀ = 0.35, <i>L</i> = 140 km	<i>R</i> ₀ = 0.31, <i>L</i> = 200 km	<i>R</i> ₀ = 0.38, <i>L</i> = 170 km
	Below 700 hPa	<i>R</i> ₀ = 0.37, <i>L</i> = 180 km	<i>R₀</i> = 0.35, <i>L</i> = 190 km	<i>R</i> ₀ = 0.37, <i>L</i> = 180 km
HIMAWARI-7	Above 450 hPa	<i>R</i> ₀ = 0.29, <i>L</i> = 320 km	<i>R₀</i> = 0.27, <i>L</i> = 340 km	<i>R</i> ₀ = 0.29, <i>L</i> = 320 km
	450 – 700 hPa	<i>R</i> ₀ = 0.30, <i>L</i> = 350 km	<i>R₀</i> = 0.35, <i>L</i> = 310 km	<i>R</i> ₀ = 0.30, <i>L</i> = 350 km
	Below 700 hPa	<i>R</i> ₀ = 0.35, <i>L</i> = 290 km	<i>R₀</i> = 0.35, <i>L</i> = 300 km	<i>R</i> ₀ = 0.35, <i>L</i> = 290 km
LeoGeo	Above 300 hPa	<i>R</i> ₀ = 0.46, <i>L</i> = 150 km	-	<i>R</i> ₀ = 0.40, <i>L</i> = 150 km
	300 – 700 hPa	<i>R</i> ₀ = 0.32, <i>L</i> = 130 km	-	<i>R</i> ₀ = 0.35, <i>L</i> = 180 km
	Below 700 hPa	<i>R</i> ₀ = 0.35, <i>L</i> = 130 km	-	<i>R</i> ₀ = 0.38, <i>L</i> = 200 km

Результаты усвоения

- верификация прогнозов согласно стандартам CBS/WMO по полям оперативного анализа и наблюдениям с радиозондов
- использование парного t-критерия Стьюдента для проверки значимости различия изменений
- старт модели с начальных условий, не учитывающих и учитывающих корреляции в ошибках наблюдений
- прогнозы за июнь 2015 года

Выводы

- точность численных прогнозов может быть улучшена за счёт более аккуратного описания корреляционных связей в ошибках наблюдений
- уточнение ветра положительно влияет на точность других модельных переменных
- параметры функции, моделирующих корреляцию зависят от спутников, высоты и географии наблюдений

Планы на будущее

- использование данных с других спутников и диапазонов
- использование полученных результатов для запуска системы вероятностного ансамблевого среднесрочного прогноза погоды на базе модели ПЛАВ

Исследование выполнено в Гидрометцентре России за счет гранта Российского научного фонда (проект №14-37-00053)

Federal Service for Hydrometeorology and Environmental Monitoring

HYDROMETEOROLOGICAL CENTRE OF RUSSIA

About weather—at first hand

THANKS FOR YOUR ATTENTION!