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Topics covered

• Basis for seasonal forecasting

• How seasonal forecasts are produced

• Deterministic vs probabilistic forecasts

• Forecast skill

• ENSO

• Multi-model ensembles 



Basis for seasonal 

forecasting







очень плохо!



Fundamental importance of uncertainty

Daily temperature forecast for Victoria, Canada 

starting February 28

1 ensemble member

average over CanCM3 ensemble

2 models, 10 forecasts from each starting from 

slightly different initial conditions



http://www.easterbrook.ca/steve/2010/07/tracking

-down-the-uncertainties-in-weather-and-climate-

prediction/

Initial condition uncertainty leads to forecast uncertainty!

Ensemble of forecasts

When uncertainties are large, a single forecast tells us very little  need an 

ensemble of forecasts to estimate the probabilities of different outcomes







Necessary conditions for useful 

climate predictions

1) The phenomenon being forecast must be predictable

2) Prediction method must have ability to capitalize on 

natural predictability 

 If these two conditions are met then there is potential 

for skillful predictions



How seasonal forecasts 

are produced



IBM Supercomputer

Computer 

models of 

the Earth’s 

climate: 

tools for 

assess-

ment and 

prediction 



Weather forecast

• Weather prediction model

• Current global 

observations used to 

initialize model

1-10 days

Climate projection

• Climate model (atmosphere 

/ocean/land/sea ice) 

• Initial conditions not critical

10-100 years

What are seasonal forecasts?



Seasonal forecast

1-12 months

What are seasonal forecasts?

Weather forecast

• Weather prediction model

• Current global 

observations used to 

initialize model

1-10 days

Climate projection
10-100 years

• Climate model (atmosphere 

/ocean/land/sea ice) 

• Initial conditions not critical



1 tier (coupled) vs 2 tier forecasts

land ocean

atmosphere

land ocean

atmosphere

1 tier forecast 2 tier forecast

• atmosphere interacts with 

land

• SSTs specified (no ocean 

model)

• For example, some 

systems simply persist 

the SST anomaly present

before the forecast

• 1 tier systems cannot 

forecast El Niño/La Niña

• atmosphere interacts with 

land and ocean

• coupled climate model 

includes ocean component

• future SSTs are forecast 

by model

• 2 tier systems potentially 

can predict El Niño/La 

Niña



Motivation for 

coupled vs

2-tier system
Mar 2006

Apr 2006

May 2006

Jun 2006

Jul 2006

Oct 2006

Observed SST anomaly

…

“Forecast” (persisted) SST anomaly

Example: consider 2-tier 

forecast (persisted 

SSTA) from 1 April 2006

2-tier system with 

persisted SSTA cannot 

predict an El Niño or      

La Niña 



Steps for producing seasonal forecasts

• Run ensemble of forecasts from slightly different initial 

conditions

• Correct for biases in forecasts using hindcasts  anomalies

• Process information into deterministic or probabilistic 

forecast

• Include skill evaluation with forecast



Ensemble forecast

Initial 

state 1

Forecast 1

12 months
month 1 month 2 month 3

Initial 

state 2

Forecast 2

12 months
month 1 month 2 month 3

Forecast 2

12 monthsmonth 1 month 2 month 3

…

Initial 

state 10



Ensemble forecast

Initial 

state 1

Forecast 1

12 months
month 1 month 2 month 3

Initial 

state 2

Forecast 2

12 months
month 1 month 2 month 3

Forecast 2

12 monthsmonth 1 month 2 month 3

…

Initial 

state 10

Lead 0 months

Forecast 

issued

Forecast valid

Lead 1 month

Definition of 

lead time



Burst vs lagged initialization

Lagged

initialization

Forecast start time Month 1 Month 2 Month 3 Month 3

Advantages of lagged initialization

• Computational load spread out in time  can have more ensemble 

members, more expensive model

Burst

initialization

Forecast start time Month 1 Month 2 Month 3 Month 3

Advantages of burst initialization

• Shortest lead time, statistically homogeneous sample

• Anomalies, hindcast climatologies etc. easy to compute



Purposes of hindcasts

• Estimate lead-time dependent model biases (“drift”) so that they can 

be corrected for – more in lab session

• Estimate historical skill 

• Calibrate probabilistic forecasts 

Hindcasts enable us to…

Notes:

• When estimating in-sample corrections and skill, cross validation 

should be applied to avoid inflated estimates of skill 

• WMO currently recommends 1981-2010 as hindcast base period

• 30 years  12 initialization months  10 ensemble members = 3600   

years of model integration per hindcast !  (assuming 12 mon range)

Hindcasts (or reforecasts or historical forecasts) are “forecasts” of the past



CanCM3/4 model temperature biases

Merryfield et al. (MWR 2013)

Relative to ERA-Interim reanalysis 1981-2010 



CanCM3/4 model precipitation biases

Merryfield et al. (MWR 2013)

Relative to GPCP2.1 1981-2010 

DJF JJA



• Because climate models are imperfect, each model has 

its own climate that differs from that of the real world

• Thus, models initialized near observed climate state will 

progressively drift towards biased model climate:

• These biases can be removed by computing anomalies 

with respect to forecast climatology that is a function of 

forecast time and lead time, & comparing with observed 

anomalies

obs climatology

model climatology

forecast climatology

time

Correction for model biases



Correction for model biases

• Because climate models are imperfect, each model has 

its own climate that differs from that of the real world

• Thus, models initialized near observed climate state will 

progressively drift towards biased model climate:

• These biases can be removed by computing anomalies 

with respect to forecast climatology that is a function of 

forecast time and lead time, & comparing with observed 

anomalies

obs climatology

model climatology

forecast climatology

time

forecast anomalies



Calculation of bias correction

• Forecast anomalies:

where  k = predicted season,  l = lead time, 

< > indicates averaging over some standard set    

of years (e.g. 1981-2010)

• Bias corrected forecast:

where < Ok > = average of  observations (climatology)

( Fk,l )corr = F’k,l +  < Ok > = Fk,l +  < Ok > - < Fk,l >

F’k,l = Fk,l - < Fk,l >



Deterministic vs 

probabilistic forecasts



Ensemble deterministic forecasts
Example: Seasonal mean temperature for JFM 2016

Deterministic forecast (single location)

“The average temperature in Victoria, Canada during 

JFM 2016 will be 0.85C above normal relative to the 

average of all years in 1981-2010.”

However, these products contain no indication of uncertainty

Deterministic forecast map



Representing forecast uncertainty
Example: forecast of Victoria average temperature

(departure from normal  in C for winters starting in Dec of indicated year)

Consider 30 recent winters (1981-2010)

Divide into 10 coldest, 10 middle, 10 warmest:

below normal near normal above normal

1984

-2.07

1992

-1.95

1988

-1.54

2008

-1.49

1981

-1.12

1990

-1.06

1996

-0.78

1983

-0.55

2010

-0.39
1995

-0.37

2007

-0.37

1998

-0.19

1985

-0.17

1987

-0.13

1999

-0.11

1989

-0.06

2000

0.00

2001

0.12

2006

0.28

1994

0.49

1997

0.54

2004

0.57

1993

0.77

2003

0.78

1982

0.88

2009

0.96

1986

0.99

2005

1.12

2002

1.55

1991

1.71

1



Probabilistic forecast (single location)

Here the forecast probability distribution or PDF is described in terms of 

probabilities that forecast seasonal mean temperature will fall into climatologically 

equi-probable tercile categories: below normal  near normal  above normal

Seasonal mean 

temperature



Probabilistic forecast (single location)

Here the forecast probability distribution or PDF is described in terms of 

probabilities that forecast seasonal mean temperature will fall into climatologically 

equi-probable tercile categories: below normal  near normal  above normal

Seasonal mean 

temperature



Probabilistic forecast (single location)

Here the forecast probability distribution or PDF is described in terms of 

probabilities that forecast seasonal mean temperature will fall into climatologically 

equi-probable tercile categories: below normal  near normal  above normal

Seasonal mean 

temperature

Note: here the ensemble of 

forecast values has been fit to a 

normal distribution. Probabilities 

can also be obtained from raw 

forecast values 



Probabilities in each category

White = ‘equal chance’

(no category > 40%)

Highest probability at 

each location

Above

Normal

Near

Normal

Below

Normal

Probabilistic forecast maps



Reliability of probabilistic forecasts
• Consider many probabilistic forecasts from different times, locations

• Compare forecast probabilites with observed frequencies

Forecasts overconfident:

forecast probability > 

observed frequency

Forecasts underconfident:

forecast probability < 

observed frequency
Forecasts reliable:

forecast probability = 

observed frequency

climatological frequency =

1/3 for tercile forecasts



Reliability of probabilistic forecasts
• Consider many probabilistic forecasts from different times, locations

• Compare forecast probabilites with observed frequencies

Forecasts overconfident:

forecast probability > 

observed frequency

Forecasts underconfident:

forecast probability < 

observed frequency
Forecasts reliable:

forecast probability = 

observed frequency

climatological frequency =

1/3 for tercile forecasts

skill > 0

no skill

no skill



Advantages of calibrated probability forecasts
Seasonal precipitation forecast

Forecast Reliability
perfect 

forecast

Brier skill 

score = 0

no 

resolution

• uncalibrated probabilities: 

- high probabilities predicted     

far more frequently than 

observed

- overconfident, especially 

for precipitation and near-

normal category

- near-normal grossly 

overpredicted

• calibrated probabilities: 

- much more reliable

(forecast probability 

observed frequency)

- less overconfident

- near-normal less

overpredicted



Growth of uncertainty with increasing lead

Lead 0 months Lead 3 months

Lead 6 months Lead 9 months



Growth of uncertainty with increasing lead

Lead 0 months Lead 3 months

Lead 6 months Lead 9 months



Growth of uncertainty with increasing lead

Lead 0 months Lead 3 months

Lead 6 months Lead 9 months



Probability of exceedance forecasts from IRI

http://iridl.ldeo.columbia.edu/maproom/Global/Forecasts/Flexible_Forecasts/temperature.html

• Useful if tercile below/near/above normal probabilities are not specific 

enough

• Example: probability that JFM 2016 mean temperature will exceed 80th

percentile relative to 1981-2010 (Options are 10, 15,…85, 90 percentiles)



Forecast skill



Skill scores

Example: Anomaly correlation
fo

(f) (o)
AC=

f= forecast anomaly 

o= observed anomaly 

_

_

_

1

0

-1

Perfect

No skill

(?)

AC=0.9 AC=0.5 AC=0.3

f’ f’ f’

o’ o’ o’



Global anomaly correlation skills
DJF (Lead 0 months) JJA (Lead 0 months)

Near-surface temperature

Precipitation

• Lower in extratropics than in tropics

• Lower over land than oceans

• Lower in winter than summer

• (Much) lower for precip then temp

Rules of thumb



Additional 

deterministic

and 

probabilistic 

skill scores

SON temperature

(lead 0 months)



Additional 

deterministic

and 

probabilistic 

skill scores

SON precipitation

(lead 0 months)



ENSO



Equatorial Pacific climate

Normal

SST C



El Niño 

Normal

SST C

Equatorial Pacific climate



El Niño 

Normal

Equatorial Pacific climate

SST anomaly C

SST C



El Niño direct impacts

shift in deep

convection

wetdry dry



El Niño teleconnections

h
e
a
ti
n
g



El Niño teleconnections

h
e
a
ti
n
g

Trenberth et al., JGR (1998) Horel & Wallace, MWR (1981) 

upper tropospheric response: 

quasi-stationary

Rossby wave

polar jet stream

shifted north

subtropical jet 

stream extended

& amplified

strengthened

Aleutian Low

Northern winter



Historical El Niño/La Niña variability  

Nino3.4 index• A widely used indicator of El Niño/La Niña activity is 

Nino3.4 = mean SST anomaly in 5N-5S, 120W-170W 

• The Oceanic Nino Index (ONI) consists of a 3-month 

rolling average of Nino3.4

0

0.5

1.0

1.5

2.0

-0.5

-1.0

-1.5

-2.0

2.5



Historical El Niño/La Niña variability  

Very strong El Niños

0

0.5

1.0

1.5

2.0

-0.5

-1.0

-1.5

-2.0

2.5

DJF-averaged SST anomalies from NCEP/OISST



Historical El Niño/La Niña variability  

Very strong El Niños

DJF-averaged SST anomalies from NCEP/OISST

0

0.5

1.0

1.5

2.0

-0.5

-1.0

-1.5

-2.0

2.5

Very strong El Niños
“Eastern Pacific”

Moderate El Niños
“Central Pacific” or “Modoki”



Global El Niño impacts 



Global El Niño 

impacts



Global La Niña 

impacts



Example: ENSO impacts on Victoria
Example: forecast of Victoria average temperature

(departure from normal  in C for winters starting in Dec of indicated year)

Consider 30 recent winters (1981-2010)

Divide into 10 coldest, 10 middle, 10 warmest:

below normal near normal above normal

1

La 

Niña

La 

Niña
La 

Niña

La 

Niña
La 

Niña

La 

Niña

El 

Niño
El 

Niño

El 

Niño
El 

Niño

El 

Niño

1984

-2.07

1992

-1.95

1988

-1.54

2008

-1.49

1981

-1.12

1990

-1.06

1996

-0.78

1983

-0.55

2010

-0.39
1995

-0.37

2007

-0.37

1998

-0.19

1985

-0.17

1987

-0.13

1999

-0.11

1989

-0.06

2000

0.00

2001

0.12

2006

0.28

1994

0.49

1997

0.54

2004

0.57

1993

0.77

2003

0.78

1982

0.88

2009

0.96

1986

0.99

2005

1.12

2002

1.55

1991

1.71

El 

Niño

La 

Niña
La 

Niña

El 

Niño

El 

Niño

El 

Niño
El 

Niño



mm/day

El 

Niño 

La 

Niña

Composites of strongest El Niño/La Niña events since 1981

DJF MAMprecipitaton



mm/day

El 

Niño 

La 

Niña

Composites of strongest El Niño/La Niña events since 1981

DJF MAMprecipitaton



ENSO teleconnection to SW Asia in Spring
Regressions of MAM temperature and precipitation on Nino3.4 index

(1981-2010, plotted where correlation>0.3)

Temperature (ERA-Interim) precipitation (GPCP2.3)



ENSO teleconnection to SW Asia in Spring
Regressions of MAM temperature and precipitation on Nino3.4 index

(1981-2010, plotted where correlation>0.3)

CanCM4 skill



lead 0 mon

lead 9 mon

…OISST obs

• Some false alarms, such as        

1990-91 and 2003-2004

• However, no misses for El Niño/La 

Niña events exceeding 1.5C, except 

for unusual summer-peaked 1987 El 

Niño

Historical CanCM3/4 ENSO predictions
Seasonal mean Nino3.4 index: observed vs 0-9 month lead times

Nino3.4 anomaly correlation skill



Nino3.4 ensemble plumes from May 2019

 similar message: weak El Niño 

trending toward ENSO-neutral, with 

some chance of persisting



Multi-model ensembles 



Why multi-model ensembles?

1) Different models have different strengths and weaknesses

- model errors will tend to cancel each other out

- higher skill for multi models

than for single model, for a 

given ensemble size N

- this example considers 4 

models with 10 ensemble 

members each

Kharin et al., Atm.-Ocn. (2009)

2) More ensemble members 

available by combining models 

than from individual models

1 model

2 models

3 models

4 models

S
k
ill



WMO multi-model ensemble

• 13 Global Producing Centres (GPCs) representing different meteorological 

services

• Forecast information provided to Regional Climate Centres (RCCs) and Climate 

Outlook Forums (COFs)

• Maps publicly available, data password protected

https://www.wmolc.org/
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WMO multi-model ensemble

• 13 Global Producing Centres (GPCs) representing different meteorological 

services

• Forecast information provided to Regional Climate Centres (RCCs) and Climate 

Outlook Forums (COFs)

• Maps publicly available, data password protected

https://www.wmolc.org/



APCC multi-model ensemble

• Includes models USA, Canada, Australia, Korea, …

• Month 1-3 and 4-6 probabilistic & deterministic forecast maps publicly available

http://www.apcc21.org/ser/outlook.do



Copernicus multi-model ensemble

• Currently models include ECMWF, UK Met Office, Météo-France, CMCC, DWI

• Numerical data publicly available

• More models to be added

https://climate.copernicus.eu/seasonal-forecasts



https://www.cpc.ncep.noaa.gov/products/NMME/

• Currently 7 models from US, Canada 

• Numerical data publicly available

• More in tomorrow’s lecture



Summary



Guiding principles of climate       

(e.g. seasonal) forecasting

1) Forecasts must communicate uncertainty

Probabilities

2) Forecasts should be interpreted 

in the context of past 

performance (skill)

ensemble forecasts

many years of hindcasts



Extra slides



Equator

Equatorial atmosphere/ocean

www.meted.ucar.edu



Equator

Equatorial atmosphere/ocean

www.meted.ucar.edu



Coriolis
(trade winds)

Equatorial atmosphere/ocean



Coriolis
(trade winds)

Equatorial atmosphere/ocean

westward

current



Coriolis
(trade winds)

Coriolis

Equatorial atmosphere/ocean

westward

current



cooler water

Coriolis
(trade winds)

Coriolis

Equatorial atmosphere/ocean

westward

current



Typical buildup of a strong El Niño: the 

role of westerly wind bursts (WWB)

surface

thermocline
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climatological easterly

warm cool

upwelling

low 

pressure

high 

pressure



Typical buildup of a strong El Niño: the 

role of westerly wind bursts (WWB)
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Typical buildup of a strong El Niño: the 

role of westerly wind bursts (WWB)
In

d
o
n
e
s
ia

S
o
u
th

 A
m

e
ri
c
a

climatological easterly

warm cool

surface

thermocline

downwelling Kelvin wave

2-3 m/s

upwelling Rossby

wave

~1 m/s
upwelling

westerly wind burst (WWB)



2-3 months later
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anomalous westerly (Bjerknes feedback)
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2-3 months later

In
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th
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a

warmercooler surface

thermocline

upwelling Rossby

wave

~1 m/s

upwelling

climatological easterly

anomalous westerly (Bjerknes feedback)

SST anomaly - “El Niño” SLP anomaly - “Southern Oscillation” 

El Niño Southern Oscillation (ENSO)



Example: 1997

Low-level zonal   

wind anomalies

NOAA/NCEP/CPC Monthly Ocean Briefing

http://www.cpc.ncep.noaa.gov/products/GODAS/



Example: 1997

Low-level zonal   

wind anomalies

NOAA/NCEP/CPC Monthly Ocean Briefing

http://www.cpc.ncep.noaa.gov/products/GODAS/

Westerly 

wind 

bursts



NOAA/NCEP/CPC Monthly Ocean Briefing

http://www.cpc.ncep.noaa.gov/products/GODAS/

Example: 1997

Low-level zonal   

wind anomalies

Mean temperature to 

300m depth anomalies

Kelvin 

waves



Example: 1997

Low-level zonal   

wind anomalies

Mean temperature to 

300m depth anomalies

SST anomalies

NOAA/NCEP/CPC Monthly Ocean Briefing

http://www.cpc.ncep.noaa.gov/products/GODAS/

SST 

increase



Example: 1997

Low-level zonal   

wind anomalies

Mean temperature to 

300m depth anomalies

SST anomalies

NOAA/NCEP/CPC Monthly Ocean Briefing

http://www.cpc.ncep.noaa.gov/products/GODAS/

SST 

increase

Bjerknes feedback


