


# The Climate-system Historical Forecast Project (CHFP)

CITES2019 Ramiro Saurral (CIMA, Buenos Aires, Argentina) Moscow, Russia. 28 May 2019





#### **Background and main objectives of CHFP**

#### First steps...

The CHFP was born in 2007 as part of the Working Group on Seasonal to Interannual Prediction (currently Working Group on Subseasonal to Interdecadal Prediction; WGSIP), having the nature of a multi-model and multi-institutional experimental framework for **sub-seasonal to decadal complete physical climate system** prediction.

By the complete physical climate system, we mean contributions from the atmosphere, oceans, land surface cryosphere and atmospheric composition in producing regional and sub-seasonal to decadal climate anomalies. This experimental framework is based on advances in climate research during the past years, which have lead to the understanding that modeling and predicting a given climate anomaly over any region is incomplete without a proper treatment of the effects of SST, sea ice, snow cover, soil wetness, vegetation, stratospheric processes, and atmospheric composition (carbon dioxide, ozone, etc.). **CHFP is particularly focused on the sub-seasonal to seasonal scale**.

#### **Objectives**

- Provide a baseline assessment of our seasonal prediction capabilities using the best available models of the climate system and data for initialisation
- Provide a framework for assessing of current and planned observing systems, and a test bed for integrating process studies and field campaigns into model improvements
- Provide an experimental framework for focused research on how various components of the climate system interact and affect one another
- Provide a test bed for evaluating IPCC class models in seasonal prediction mode

#### **An introduction to CHFP**

 The CHFP database hosts forecast systems outputs from retrospective predictions of the seasonal global climate from year to year, initialized at least twice a year across recent decades, and is freely available for research use.



http://chfps.cima.fcen.uba.ar/

#### Is monthly initialization worth the computational cost?

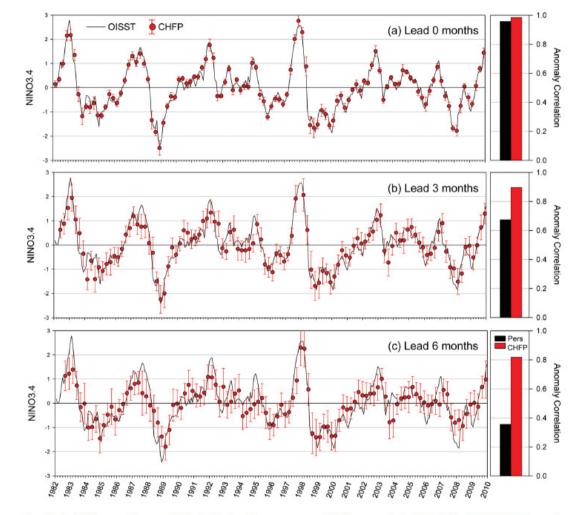



Fig. 2. (left) Seasonal-mean Niño-3.4 index (area-averaged SST anomaly in 5°S–5°N, 170°–120°W), as observed (OISST analysis; black) and predicted by CHFP models (red) initialized from February, May, August, and November 1982–2009 at (a) 0-, (b) 3-, and (c) 6-month lead times. Circles indicate mean values and error bars indicate standard deviations of predictions from 95 ensemble members. (right) Comparison of CHFP anomaly correlation skill values with those based on persisting the observed Niño-3.4 value prior to the start of the forecast.

From Tompkins et al. (2017), BAMS

 $4 \parallel$ 

The CHFP database currently contains data from 16 coupled forecast systems and hosts more than 10 TB of information in NetCDF format.

It is continuously growing and will continue to do so over the coming years to serve as a record of progress in global seasonal forecasting capability.

| Forecast<br>system | Research<br>Center/Country | Forecast<br>system | Research<br>Center/Country |
|--------------------|----------------------------|--------------------|----------------------------|
| ARPEGE             | MétéoFrance                | JMA/MRI-CGCM1      | JMA (Japan)                |
| CCCma CanCMa       | (France)                   | JMA/MRI-CGCM2      | JMA( Japan)                |
| CCCma-CanCM3       | CCCma (Canada)             | L38GloSea4         | MetOffice (UK)             |
| CCCma-CanCM4       | CCCma (Canada)             | L85GloSea4         | MetOffice (UK)             |
| CFS                | NCEP (USA)                 | MIROC5             | CCSR (Japan)               |
| CMAM               | Canada                     | MPI-ESM-LR         | MPI (Germany)              |
| CMAMlo             | Canada                     |                    |                            |
| ECMWF-S4           | ECMWF (UK)                 | MPI-ESM-MR         | MPI (Germany)              |
| •                  |                            | POAMA              | BoM (Australia)            |
| GloSea5            | MetOffice (UK)             |                    |                            |

Near future: NMME (Phase 1 and 2), RHMC SL-AV, SINTEX-2

- According to CHFP protocols, forecast systems within CHFP <u>MUST</u> include seasonal (4-month lead-time) forecasts initialized <u>AT LEAST</u> twice a year, in May and November. If available, additional start times are also welcome (several models have start times every month, or 4 times a year, which is of course useful).
- Data from each forecast system is hosted in its native resolution (i.e. there is not any regridding onto a same grid).
- CHFP hosts both monthly mean and daily data.
- Forecasts start near 1979 and end around 2010.
- Some of the variables included in CHFP are 2m mean, minimum and maximum temperatures, total precipitation, zonal and meridional winds, heat fluxes and soil moisture, among others for the atmosphere, while several others are available related to the ocean (SST, sea ice, ...)

#### Some papers using CHFP data

Clim Dyn CrossMark DOI 10 1007/s00382-016-3444-9 RMet Climate predictability and prediction skill on seasonal over South America from CHFP models Marisol Osman<sup>1,2,3</sup> · C. S. Vera<sup>2,3</sup> The Climate-system Historic stratosphere-resolving models m predictions in bor Clim Dvn DOI 10.1007/s00382-015-2710-2 Amy H. Butler,<sup>a,b\*</sup> Alberto Arribas,<sup>c</sup> Maria Athana Received: 14 April 2016 / Accepted: 2 1 © Springer-Verlag Berlin Heidelberg 20 Andrew Charlton-Perez,<sup>f</sup> Michel Déqué,<sup>g</sup> Danie Abstract This work presents an ability and skill of climate anoma Predictability of the tropospl The study was made considering Hemisphere from CHFP mo of seasonal forecasts for surface tation and regional circulation, fro lation models included in the Cli Marisol Osman<sup>1</sup> · C. S. Vera<sup>1</sup> · F. J. Doblas-Project. Predictability was evaluate of the signal-to-total variance rat was assessed computing anomaly Both indicators present over the at the tronics than at the extratro temperature and precipitation. Mo prediction skill for temperature a Received: 16 October 2014 / Accepted: 8 June 2015 than in JJA while for precipitation © Springer-Verlag Berlin Heidelberg 2015 els in both seasons. The largest va skill for both variables and seaso <sup>n</sup>Canadian Centre for Climate Modelling and Analysis Abstract An assessment of the predictability western South America while mo <sup>o</sup>Max Planck Institute for Meteor tion skill of the tropospheric circulation in the values for extratropical precipitati America and the extratropical A Hemisphere was done. The analysis is based of levels in ENSO years of both vari forecasts of geopotential heights at 200, 500 an although with the same spatial for austral summer and winter from 11 models ing in the Climate Historical Forecast Project. that predictability (signal-to-variance ratio) and skill (anomaly correlation) in the tropics is high the extratropics and is also higher in summer th Marisol Osman ter. Both predictability and skill are higher at h sman@cima.fcen.uba.a low altitudes. Modest values of predictability a Ciudad Universitaria, Pabellón II-20 found at polar latitudes in the Bellinghausen-C1428EGA Buenos Aires, Argentin Seas. The analysis of the changes in predictabili Centro de Investigaciones del Mar y diction skill in ENSO events reveals that both CONICET-UBA), UMI IFAECI/CN model performance varies widely. Increasing the en higher in the El Niño-Southern Oscillation (EN than in all years, while the spatial patterns of n 3 Facultad de Ciencias Exactas y Nati de Ciencias de la Atmósfera y los O minima remain unchanged. Changes in sign ratio observed are mainly due to signal char

than changes in noise. Composites of geopotent

anomalies for El Niño and La Niña years are in

with observations

The Climate-System Historical Forecast Project

Providing Open Access to Seasonal Forecast Ensembles from Centers around the Globe

Adrian M. Tompkins, María Inés Ortiz De Zárate, Ramiro I, Saurral, Carolina Vera, CELESTE SAULO, WILLIAM J. MERRYFIELD, MICHAEL SIGMOND, WOO-SUNG LEE, JOHANNA BAEHR, ALAIN BRAUN, AMY BUTLER, MICHEL DÉQUÉ, FRANCISCO J. DOBLAS-REYES, MARGARET GORDON, ADAM A. SCAIFE, YUKIKO IMADA, MASAYOSHI ISHII, TOMOAKI OSE, BEN KIRTMAN, ARUN KUMAR, WOLFGANG A. MÜLLER, ANNA PIRANI, TIM STOCKDALE, MICHEL RIXEN, AND TAMAKI YASUDA

UNCERTAINTY IN SEASONAL FORE- used to process them. As the forecast evolves, the CASTING. Any prediction of the future evolution of the Earth system requires an associated assessment for the days ahead or is a longer-term prediction for the following months and seasons.

For seasonal forecasts, the uncertainty associrapidly in time, is usually addressed by running multiple forecasts with perturbations applied to the perturbed initial conditions are of a suitable magnitude to represent the uncertainty in the observational measurements and the analysis tools that are

semble "spread," should therefore reflect the typical of its uncertainty. This is true whether the forecast is forecast error, or "uncertainty": in other words, the eventual real-world evolution should be contained within the cluster of this forecast ensemble. In tandem, uncertainty in forecasts is also contributed to ated with inexact initial conditions, which can grow by our inexact representations of the Earth system physics. This contribution to uncertainty is sampled by employing different Earth system models (Yun initial state of the ocean and atmosphere (Arribas et et al. 2005; Weisheimer et al. 2009; Smith et al. 2013), al. 2011; Stockdale et al. 2011). The idea is that the the so-called multimodel approach, which is often supplemented by the use of perturbations to physical processes, known as stochastic physics schemes, to further account for structural errors in a particular

KIRTHAN-Cooperative Institute for Marine and Atmospheric

differences between the forecasts, known as the en-

International Centre for Theoretical Physics, Trieste, Italy; ORTIZ DE ZARATE, SAURRAL, AND VERA-Centro de Investigaciones del Mar y la Atmósfera/UBA-CONICET, DCAO, and UMI-IFAECI/ CNRS, Buenos Aires, Argentina; SAULO-Servicio Meteorológico Nacional, Buenos Aires, Argentina; MERRYHELD, SIGHOND, AND Lss-CCCma, Environment and Climate Change Canada, Victoria, British Columbia, Canada: BASHR-Institute of Oceanography. Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany: BRAUN\* AND Dtout-Météo-France, Toulouse, France; BUTLER-NOAA/CIRES, Boulder, Colorado; DosLAS-REYES-Institució Catalana de Recerca i Estudis Avancats, and Barcelona Supercomputing Center, Barcelona, Spain; GORDON-Met Office, Exeter, United Kingdom; Scare-Met Office, and College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom; IMADA, ISHII, AND OSE-Climate Research Department, Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan;

AFFILIATIONS: TOMPKINS-Earth System Physics, Abdus Salam

Studies, Rosenstiel School for Marine and Atmospheric Science, University of Miami, Miami, Florida; KUHAR-NOAA, Silver Spring, Maryland; MULLER-Max Planck Institute for Meteorology, Hamburg, Germany, Pirani-Université Paris Saclay, Paris, France, and Abdus Salam International Center for Theoretical Physics. Trieste, Italy; STOCKDALE-ECMWF, Reading, United Kingdom; RIXEN-World Climate Research Programme, World Meteorological Organization, Geneva, Switzerland; YASUDA-Climate Prediction Division, Japan Meteorological Agency, Tokyo, Japan \* Retired CORRESPONDING AUTHOR: Adrian Tompkins, tompkins@ictp.it DOI:10.1175/BAMS-D-16-0209.1

> ©2017 American Meteorological Society For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

Harry Hendon,<sup>j</sup> Yukiko Imada,<sup>k</sup> Masavoshi Ishii, Arun Kumar,<sup>m</sup> Craig MacLachlan,<sup>c</sup> William J. Merry Adam A. Scaife,<sup>c</sup> John Scinocca,<sup>n</sup> Michael Sigmond,<sup>n</sup> <sup>a</sup>Cooperative Institute for Research in Environmental Scie <sup>b</sup>National Oceanic and Atmospheric Administration/Earth Systems R LIS A Met Office Hadley Cer <sup>d</sup>Institute of Oceanography, Centre for Earth System Research an <sup>e</sup>Departamento de Fisica de la Tierra II, Facultad de Ciencias Fisi <sup>f</sup>Department of Meteorology, Un <sup>8</sup>Météo-France/Centre National de Recherches Meteo hGEOMAR Helmholtz Centre for Ocean Resea <sup>1</sup>Deutscher Wetterdienst (DWD Bureau of Meteorology, M k Meteorological Research Institute, Japan Me Finnish Meteorological Instit <sup>m</sup>National Oceanic and Atmospheric Administration/National Weath

PEuropean Centre for Medium-Range V 9 Japan Meteorological Age

\*Correspondence to: A. H. Butler, NOAA/ESRL/CSD, 325 Broadway, B

Using an international, multi-model suite of histo Research Programme (WCRP) Climate-system H compare the seasonal prediction skill in boreal the stratosphere and its dynamics ('high-top') and evaluate hindcasts that are initialized in Novem the stratosphere and how they relate to boreal y forecast skill. We are unable to detect more skil the low-top ensemble-mean in forecasting the win

a given model. We then examine two major processes involving stratosphere-troposphere interactions (the El Niño/Southern Oscillation (ENSO) and the Ouasi-Biennial Oscillation (QBO)) and how they relate to predictive skill on intraseasonal to seasonal time-scales, particularly over the North Atlantic and Eurasia regions. High-top models tend to have a more realistic stratospheric response to El Niño and the QBO compared to low-top models. Enhanced conditional wintertime skill over high latitudes and the North Atlantic region during winters with El Niño conditions suggests a possible role for a stratospheric pathway. compiling retrospective forecasts made with state-of-the-

Buenos Aires, Buenos Aires, Argen

Published online: 21 November 2016

### How to access the data

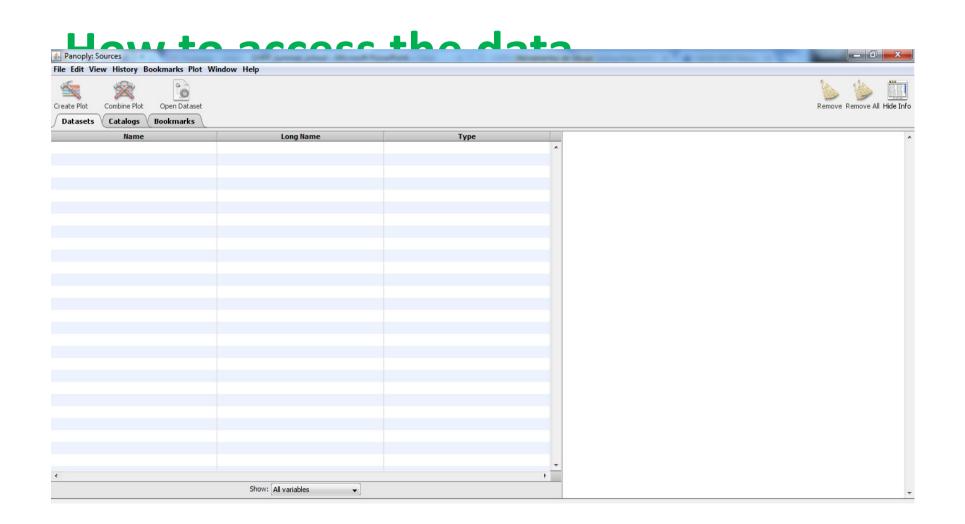
Downloading and using CHFP is very easy! The steps are:

1) Register at the CHEP website (http://chfns.cima.fcen.uba.ar)

| C I M A<br>CONICET<br>U B A | CIMA-CH<br>Home  |                |        | og          |        |              |             |      |       |          |             |       |         |              |  |                       | ta |
|-----------------------------|------------------|----------------|--------|-------------|--------|--------------|-------------|------|-------|----------|-------------|-------|---------|--------------|--|-----------------------|----|
|                             |                  |                | e      |             |        | 100000       | 24 975 01 9 |      |       |          |             |       |         |              |  | User: Saurral, Ramiro |    |
|                             | CHFP/S           | SHFP           | Atr    | nosph       | iere   | - Sur        | face ·      | - Mo | nthl  | У        |             |       |         |              |  |                       |    |
| Component                   | Select In        | itial S        | tart M | lonth       |        |              |             |      |       |          |             |       |         |              |  |                       |    |
| Atmosphere<br>Ocean<br>Land | <u>Fe</u>        | b <u>May</u> A |        |             | Feb Ma | <u>Aug N</u> | ov          | Feb  | May A | Aug Nov  |             | Feb N | lay Aug | y <u>Nov</u> |  |                       |    |
| Type of level               | <u>1980</u>      |                |        | <u>1990</u> |        |              | 2000        |      |       |          | <u>2010</u> |       |         |              |  |                       |    |
| Levels                      | <u>1981</u>      |                |        | <u>1991</u> |        |              | 2001        |      |       |          | <u>2011</u> |       |         |              |  |                       |    |
| Surface<br>Invariant        | <u>1982</u>      |                |        | <u>1992</u> |        |              | 2002        | 2    |       |          | 2012        |       |         |              |  |                       |    |
| Frequency                   | <u>1983</u>      |                |        | <u>1993</u> |        |              | 2003        |      |       |          | <u>2013</u> |       |         |              |  |                       |    |
| <u>6 hs</u>                 | <u>1984</u>      |                |        | <u>1994</u> |        |              | 2004        |      |       |          | <u>2014</u> |       |         |              |  |                       |    |
| Daily<br>Monthly            | <u>1985</u>      |                |        | <u>1995</u> |        |              | 2005        | 2    |       |          | <u>2015</u> |       |         |              |  |                       |    |
| Invariant                   | <u>1986</u>      |                |        | <u>1996</u> |        |              | 2006        |      |       |          | <u>2016</u> |       |         |              |  |                       |    |
|                             | <u>1987</u>      |                |        | <u>1997</u> |        |              | 2007        |      |       |          | <u>2017</u> |       |         |              |  |                       |    |
|                             | <u>1988</u>      | _              |        | <u>1998</u> |        |              | 2008        |      |       |          | <u>2018</u> |       |         | _            |  |                       |    |
|                             | <u>1989</u>      |                |        | <u>1999</u> |        |              | 2009        | 2    |       |          | <u>2019</u> |       |         |              |  |                       |    |
|                             | <u>Clear all</u> |                |        |             |        |              |             |      |       |          |             |       |         |              |  |                       |    |
|                             | Select M         | odel           |        |             |        |              |             |      |       |          |             |       |         |              |  |                       |    |
|                             |                  | GE*            | cc     | Cma-Can     | смз 🗌  | CCCm         | a-CanCN     | 14   | CFS*  |          |             | CMAN  | *       |              |  |                       |    |
|                             |                  | /lo            | EC     | MWF-S4*     |        | GloSea       | a5*         |      | JMAN  | IRI-CGCI | <b>A1</b>   | JMAM  | RI-CGC  | :M2          |  |                       |    |
|                             | 🔲 L38G           | o Sea4         | L85    | Glo Sea4*   |        | MIROC        | :5          |      | MPI-E | SM-LR*   |             | poama | 1       |              |  |                       |    |

| Drafts       To saurral@cima.fcen.uba.ar1         Date Today 14:43         Junk         Trash         CAM         CAM         CESM_NCAR         CHFP         CODEP         CONGREMET 2015         Doctorado         Gradu         ICTP         Incentivos         Meteorologica         Papers enviados         PIDDEF                                                                                                                                                                                                                     | olders          | Subject CHFP Files requested by Saurral Ramiro                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------|
| Draits         Date Today 14:43         Junk         Trash         CAM         CESM_NCAR         CHFP         CODEP         CONGREMET 2015         Doctorado         Gradu         IC3         ICTP         Incentivos         Meteorologica         Papers enviados         PIDDEF                                                                                                                                                                                                                                                        | Inbox           | From CHFP Administration 1                                                                    |
| Sent<br>Junk<br>Trash<br>CAM<br>CESM_NCAR<br>CESM_NCAR<br>CODEP<br>CODEP<br>CONGREMET 2015<br>Doctorado<br>Gradu<br>IC3<br>ICTP<br>Incentivos<br>Meteorologica<br>PIDDEF                                                                                                                                                                                                                                                                                                                                                                   | / Drafts        |                                                                                               |
| Trash       CHFP Admin Message:<br>Ramiro Saurral:<br>Your(s) selected file(s) were copied<br>You can download the files from the following list:<br>2 file(s) copied. Directory will be available during a week         CHFP          CODEP          CONGREMET 2015          Doctorado          Gradu          IC3          ICTP          Incentivos          Meteorologica          Papers enviados          PIDDEF                                                                                                                      | Sent Sent       | Date Today 14:43                                                                              |
| CAM       Ramino Saurral:         CAM       Your(s) selected file(s) were copied         CCMFP       You can download the files from the following list:         CODEP       CONGREMET 2015         Doctorado       CHFP 19860201.nc         Gradu       IC3         ICTP       Incentivos         Meteorologica       Papers enviados         PIDDEF       r                                                                                                                                                                              | 🗄 Junk          |                                                                                               |
| CAM       Your(s) selected file(s) were copied         CESM_NCAR       You can download the files from the following list:         CHEP       2 file(s) copied. Directory will be available during a week         CODEP       http://chfps.cima.fcen.uba.ar/request/20161115154305/tasmin monthly ECMWF-S4 CHEP 19860201.nc         CONGREMET 2015       Doctorado         Doctorado       CHFP 2 Automata Server         Gradu       IC3         ICTP       Incentivos         Meteorologica       Papers enviados         PIDDEF       r | 🗑 Trash         | CHFP Admin Message:                                                                           |
| CESM_NCAR       You can download the files from the following list:         CHFP       2 file(s) copied. Directory will be available during a week         CODEP       http://chfps.cima.fcen.uba.ar/request/20161115154305/tasmin monthly_ECMWF-S4_CHFP_19860201.nc         CONGREMET 2015       Doctorado         Doctorado       CHFP 2 Automata Server         Gradu       IC3         ICTP       Incentivos         Meteorologica       Papers enviados         PIDDEF       r                                                        | CAM             |                                                                                               |
| CODEP CODEP CONGREMET 2015 Doctorado Gradu IC3 ICTP Incentivos Meteorologica Papers enviados PIDDEF                                                                                                                                                                                                                                                                                                                                                                                                                                        | CESM_NCAR       |                                                                                               |
| CONGREMET 2015 Doctorado Gradu IC3 ICTP Incentivos Meteorologica Papers enviados PIDDEF                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHFP            | 2 file(s) copied. Directory will be available during a week                                   |
| Condectmer 2013<br>Doctorado<br>Gradu<br>IC3<br>ICTP<br>Incentivos<br>Meteorologica<br>Papers enviados<br>PIDDEF                                                                                                                                                                                                                                                                                                                                                                                                                           | CODEP           | http://chfps.cima.fcen.uba.ar/request/20161115154305/tasmin monthly ECMWF-S4 CHFP 19860201.nc |
| Gradu<br>IC3<br>ICTP<br>Incentivos<br>Meteorologica<br>Papers enviados<br>PIDDEF                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONGREMET 2015  | http://chfps.cima.fcen.uba.ar/request/20161115154305/tas monthly ECMWF-S4 CHFP 19860201.nc    |
| IC3<br>ICTP<br>Incentivos<br>Meteorologica<br>Papers enviados<br>PIDDEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Doctorado       | CHFP 2 Automata Server                                                                        |
| ICTP<br>Incentivos<br>Meteorologica<br>Papers enviados<br>PIDDEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 📄 Gradu         |                                                                                               |
| Incentivos Meteorologica Papers enviados PIDDEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 📄 IC3           |                                                                                               |
| Meteorologica Papers enviados PIDDEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICTP            |                                                                                               |
| Papers enviados PIDDEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tincentivos     |                                                                                               |
| PIDDEF .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 🗎 Meteorologica |                                                                                               |
| PIDDEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Papers enviados | 7                                                                                             |
| - CDAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PIDDEF          |                                                                                               |
| SPAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SPAM            |                                                                                               |
| Subsidios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Subsidios       |                                                                                               |
| WCRP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WCRP            |                                                                                               |
| WGSIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WGSIP           |                                                                                               |

## How to access the data


Files can be downloaded individually or (more efficiently) using scripts. An easy way to go in Linux is to download the list of files and use wget...

 Save the list of files (received by email) in a .txt file (e.g. file\_list.txt) http://chfps.cima.fcen.uba.ar/request/20140128131722/tasmin\_monthly\_ECMWF-S4\_CHFP\_19810201.nc http://chfps.cima.fcen.uba.ar/request/20140128131722/tasmin\_monthly\_ECMWF-S4\_CHFP\_19820201.nc http://chfps.cima.fcen.uba.ar/request/20140128131722/tasmin\_monthly\_ECMWF-S4\_CHFP\_19830201.nc

OUse wget:

\$ wget -b -c -nd t=0 -i file\_list.txt -o log\_01

In the example above, file "log\_01" will contain all the information regarding the download speed and status.



| ew                      | cmarks Plot Window H | ер        |      |             |            |
|-------------------------|----------------------|-----------|------|-------------|------------|
|                         | Ctrl+0               |           |      |             |            |
| '<br>pen Remote Dataset |                      |           |      | Remove Remo | ove All Hi |
| pen Remote Catalog      |                      |           |      |             |            |
| ose                     | Ctrl+W               | Long Name | Туре |             |            |
| ave Image               | Ctrl+S               |           |      |             |            |
| ave Image As            | Ctrl+Mayús+S         |           |      |             |            |
| cport CL Script         | Ctrl+Alt+Coma        |           |      |             |            |
| kport Data              | •                    |           |      |             |            |
| kport KMZ               | Ctrl+Mayús+K         |           |      |             |            |
| cport Animation         | Ctrl+Mayús+A         |           |      |             |            |
| rint                    | Ctrl+P               |           |      |             |            |
| uit Panoply             | Ctrl+Q               |           |      |             |            |
|                         |                      |           |      |             |            |
|                         |                      |           |      |             |            |
|                         |                      |           |      |             |            |
|                         |                      |           |      |             |            |
|                         |                      |           |      |             |            |
|                         |                      |           |      |             |            |
|                         |                      |           |      |             |            |
|                         |                      |           |      |             |            |
|                         |                      |           |      |             |            |
|                         |                      |           |      |             |            |
|                         |                      |           |      |             |            |
|                         |                      |           |      |             |            |
|                         |                      |           |      |             |            |

## How to access the data

Another good option is to use OpenDAP, which allows to use NCO tools to subset, split and merge files <u>before</u> download.

|                  | Surface   |     |       |       |       |      |      |      |     |      |      |     |      |      |      |        |        |      |      |      |      |      |     |     |       |
|------------------|-----------|-----|-------|-------|-------|------|------|------|-----|------|------|-----|------|------|------|--------|--------|------|------|------|------|------|-----|-----|-------|
| Frecuency        | Monthly   |     |       |       |       |      |      |      |     |      |      |     |      |      |      |        |        |      |      |      |      |      |     |     |       |
| Model/Vble       | Period    | clt | hflsd | hfssd | mrsov | prir | psl  | rlds | rls | rlt  | rsds | rss | rst  | snld | tas  | tasmax | tasmin | tauu | tauv | tauv | tdps | ts   | uas | vas |       |
| ARPEGE           | 1979 2007 |     |       |       |       | 174  | 174  |      |     |      |      |     |      |      |      |        |        |      |      |      |      | 174  |     |     | 523   |
| CCCma-<br>CanCM3 | 1979 2010 | 120 | 120   | 120   | 120   | 120  | 122  | 120  | 120 | 120  | 120  | 120 | 120  | 120  | 120  | 120    | 120    |      |      |      |      | 120  | 120 | 120 | 228   |
| CCCma-<br>CanCM4 | 1979 2010 | 120 | 120   | 120   | 120   | 120  | 122  | 120  | 120 | 120  | 120  | 120 | 120  | 120  | 120  | 120    | 120    |      |      |      |      | 120  | 120 | 120 | 228   |
| CFS              | 1981 2007 |     |       |       |       | 53   | 53   |      |     |      |      |     |      |      | 53   |        |        |      |      |      |      | 53   |     |     | 21    |
| CMAM             | 1979 2008 |     |       |       |       | 60   | 60   |      |     |      |      |     |      |      | 60   |        |        |      |      |      |      | 60   |     |     | 24    |
| CMAMIo           | 1979 2008 |     |       |       |       | 60   | 60   |      |     |      |      |     |      |      | 60   |        |        |      |      |      |      | 60   |     |     | 24    |
| ECMWF-S4         | 1981 2010 | 120 |       |       | 120   | 120  | 120  | 120  | 120 | 120  | 120  | 120 | 120  | 120  | 120  | 120    | 120    | 120  | 120  |      | 120  | 120  | 120 | 120 | 240   |
| GloSea5          | 1996 2009 |     |       |       |       | 56   | 56   |      |     |      |      |     |      | 56   | 56   |        |        |      |      |      |      | 56   |     |     | 28    |
| JMAMRI-<br>CGCM1 | 1979 2010 | 128 | 128   | 128   |       | 128  | 128  | 128  | 128 | 128  | 128  | 128 | 128  | 118  | 128  | 128    | 128    |      |      |      |      | 128  | 128 | 128 | 229   |
| JMAMRI-<br>CGCM2 | 1981 2010 | 120 | 120   | 120   |       | 120  | 120  | 120  | 120 | 120  | 120  | 120 | 120  |      | 120  | 120    | 120    | 120  | 120  |      |      |      | 120 | 120 | 218   |
| L38GloSea4       | 1989 2002 |     |       |       |       | 56   | 56   |      |     |      |      |     |      | 56   | 56   |        |        |      |      |      |      | 56   |     |     | 280   |
| 85GloSea4        | 1989 2009 |     |       |       |       | 84   | 84   |      |     |      |      |     |      | 84   | 84   |        |        |      |      |      |      | 84   |     |     | 42    |
| MIROC5           | 1979 2011 | 132 | 132   | 132   |       | 132  | 132  |      | 132 | 132  | 132  | 132 | 132  | 132  | 132  | 132    | 132    | 132  | 132  |      |      | 132  |     |     | 224   |
| MPI-E SM-LR      | 1982 2011 | 60  | 60    | 60    |       | 60   | 60   | 60   | 60  | 60   | 60   | 60  | 60   | 60   | 60   | 60     | 60     | 60   | 60   |      | 60   | 60   | 60  | 60  | 1260  |
| poama            | 1980 2009 |     | 120   | 360   |       | 360  | 360  | 360  |     | 360  |      |     | 360  | 360  | 360  |        |        | 360  |      | 360  |      | 360  |     |     | 4080  |
| Total Files:     |           | 800 | 800   | 1040  | 360   | 1703 | 1707 | 1028 | 800 | 1160 | 800  | 800 | 1160 | 1224 | 1529 | 800    | 800    | 792  | 432  | 360  | 180  | 1583 | 668 | 668 | 21194 |

|                  | Levels    |      |      |      |      |      |
|------------------|-----------|------|------|------|------|------|
| Frecuency        | Monthly   |      |      |      |      |      |
| Model/Vble       | Period    | g    | hus  | ta   | ua   | va   |
| ARPEGE           | 1979 2007 | 174  | 174  | 174  | 174  | 174  |
| CCCma-<br>CanCM3 | 1979 2010 | 122  | 120  | 120  | 122  | 120  |
| CCCma-<br>CanCM4 | 1979 2010 | 122  | 120  | 120  | 122  | 120  |
| CFS              | 1981 2007 | 53   | 53   | 53   | 53   | 53   |
| CMAM             | 1979 2008 | 60   |      | 60   | 60   | 60   |
| CMAMIo           | 1979 2008 | 60   |      | 60   | 60   | 60   |
| ECMWF-S4         | 1981 2010 | 120  | 120  | 120  | 120  | 120  |
| GloSea5          | 1998 2009 | 56   |      | 56   | 56   | 56   |
| JMAMRI-<br>CGCM1 | 1979 2010 | 128  | 128  | 128  | 128  | 128  |
| JMAMRI-<br>CGCM2 | 1981 2010 | 120  | 120  | 120  | 120  | 120  |
| L38GloSea4       | 1989 2002 | 56   |      | 58   | 56   | 56   |
| L85GloSea4       | 1989 2009 | 84   |      | 84   | 84   | 84   |
| MIROC5           | 1979 2011 | 132  | 132  | 132  | 132  | 132  |
| MPI-ESM-LR       | 1982 2011 | 60   | 60   | 60   | 60   | 60   |
| MPI-E SM-MR      | 1981 2011 | 62   | 62   | 62   | 62   | 62   |
| poama            | 1980 2009 |      | 360  | 360  | 360  | 360  |
| Total Files:     |           | 1409 | 1449 | 1765 | 1769 | 1765 |

|                                                                                                              | Surface                                                                                       |                        |            |                        |                                           |            |     |      |     |     |      |     |     |      |     |        |        |      |      |      |      |     |     |                      |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------|------------|------------------------|-------------------------------------------|------------|-----|------|-----|-----|------|-----|-----|------|-----|--------|--------|------|------|------|------|-----|-----|----------------------|
| Frecuency                                                                                                    | Daily                                                                                         |                        |            |                        |                                           |            |     |      |     |     |      |     |     |      |     |        |        |      |      |      |      |     |     |                      |
| Model/Vble                                                                                                   | Period                                                                                        | clt                    | hfisd      | hfssd                  | mrsov                                     | prir       | psl | rlds | ris | rit | rsds | rss | rst | snld | tas | tasmax | tasmin | tauu | tauv | tauy | tdps | ts  | uas | vas                  |
| CCCma-<br>CanCM3                                                                                             | 1979 2008                                                                                     | 120                    | 120        | 120                    | 120                                       | 120        | 120 | 120  | 120 | 120 | 120  | 120 | 120 | 120  | 120 | 120    | 120    |      |      |      |      | 120 | 120 | 120 228              |
| CCCma-<br>CanCM4                                                                                             | 1979 2008                                                                                     | 120                    | 120        | 120                    | 120                                       | 120        | 120 | 120  | 120 | 120 | 120  | 120 | 120 | 120  | 120 | 120    | 120    |      |      |      |      | 120 | 120 | 120 228              |
| CFS                                                                                                          | 1981 2007                                                                                     |                        |            |                        |                                           | 53         | 53  |      |     |     |      |     |     |      | 53  |        |        |      |      |      |      |     |     | 10                   |
| CMAM                                                                                                         | 1979 2008                                                                                     |                        |            |                        |                                           | 60         | 60  |      |     |     |      |     |     |      | 60  |        |        |      |      |      |      |     |     | 18                   |
| CMAMIo                                                                                                       | 1979 2008                                                                                     |                        |            |                        |                                           | 60         | 60  |      |     |     |      |     |     |      | 60  |        |        |      |      |      |      |     |     | 18                   |
| JMAMRI-CGCM1                                                                                                 | 1979 2006                                                                                     |                        | 112        | 112                    |                                           | 112        | 112 | 112  | 112 | 112 | 112  | 112 | 112 | 112  |     | 112    | 112    |      |      |      |      | 112 |     | 150                  |
| MIROC5                                                                                                       | 1979 2011                                                                                     |                        | 132        | 132                    | 132                                       | 132        | 132 | 132  | 132 | 132 | 132  | 132 | 132 | 132  |     | 132    | 132    | 132  | 132  |      |      | 132 |     | 224                  |
| Total Files:                                                                                                 |                                                                                               | 240                    | 484        | 484                    | 372                                       | 657        | 657 | 484  | 484 | 484 | 484  | 484 | 484 | 484  | 413 | 484    | 484    | 132  | 132  | 0    | 0    | 484 | 240 | 240 885              |
|                                                                                                              | Levels<br>Daily                                                                               |                        |            | -<br>-                 |                                           |            |     |      |     |     |      |     |     |      |     |        |        |      |      |      |      |     |     | _                    |
| Frecuency                                                                                                    | Daily                                                                                         | 9                      | bue        | ta                     | 112                                       | <b>V</b> 2 |     |      |     |     |      |     |     |      |     |        |        |      |      |      |      |     |     |                      |
| Frecuency<br>Model/Vble                                                                                      | Daily                                                                                         | g                      | hus        | ta                     | ua                                        | va         |     |      |     |     |      |     |     |      |     |        |        |      |      |      |      |     |     |                      |
| Frecuency<br>Model/Vble<br>CCCma-<br>CanCM3                                                                  | Daily                                                                                         | g<br>120               | hus<br>120 |                        |                                           | va<br>120  |     |      |     |     |      |     |     |      |     |        |        |      |      |      |      |     |     | 80                   |
| Frecuency<br>Model/Vble<br>cccma-                                                                            | Daily<br>Period                                                                               |                        |            |                        | 120                                       |            |     |      |     |     |      |     |     |      |     |        |        |      |      |      |      |     |     | 80                   |
| Frecuency<br>Model/Vble<br>CCCma-<br>CanCM3<br>CCCma-                                                        | Daily<br>Period<br>1979 2008                                                                  | 120                    | 120        | 120                    | 120<br>120                                | 120        |     |      |     |     |      |     |     |      |     |        |        |      |      |      |      |     |     | -                    |
| Frecuency<br>Model/Vble<br>CCCma-<br>CanCM3<br>CCCma-<br>CanCM4                                              | Daily<br>Period<br>1979 2008<br>1979 2008                                                     | 120<br>120             | 120        | 120                    | 120<br>120<br>60                          | 120        |     |      |     |     |      |     |     |      |     |        |        |      |      |      |      |     |     | 80                   |
| Frecuency<br>Model/Vble<br>CCCma-<br>CanCM3<br>CCCma-<br>CanCM4<br>CMAM                                      | Daily<br>Period<br>1979 2008<br>1979 2008<br>1979 2008                                        | 120<br>120<br>60       | 120        | 120<br>120<br>60       | 120<br>120<br>60                          | 120        |     |      |     |     |      |     |     |      |     |        |        |      |      |      |      |     |     | 60<br>18<br>18       |
| Frecuency<br>Model/Vble<br>CCCma-<br>CanCM3<br>CCCma-<br>CanCM4<br>CMAM<br>CMAMIo                            | Daily<br>Period<br>1979 2008<br>1979 2008<br>1979 2008<br>1979 2008                           | 120<br>120<br>60       | 120        | 120<br>120<br>60       | 120<br>120<br>60<br>60                    | 120        |     |      |     |     |      |     |     |      |     |        |        |      |      |      |      |     |     | 60<br>18             |
| Frecuency<br>Model/Vble<br>CCCma-<br>CanCM3<br>CCCma-<br>CanCM4<br>CMAM<br>CMAMIo<br>GloSea5                 | Daily<br>Period<br>1979 2008<br>1979 2008<br>1979 2008<br>1979 2008<br>1978 2009              | 120<br>120<br>60<br>60 | 120        | 120<br>120<br>60       | 120<br>120<br>60<br>60<br>56              | 120        |     |      |     |     |      |     |     |      |     |        |        |      |      |      |      |     |     | 60<br>18<br>18       |
| Frecuency<br>Model/Vble<br>CCCma-<br>CancM3<br>CCCma-<br>CanCM4<br>CMAM<br>CMAMIo<br>GloSea5<br>JMAMRI-CGCM1 | Daily<br>Period<br>1979 2008<br>1979 2008<br>1979 2008<br>1979 2008<br>1998 2009<br>1979 2008 | 120<br>120<br>60<br>60 | 120        | 120<br>120<br>60<br>60 | 120<br>120<br>60<br>60<br>56<br>112<br>83 | 120        |     |      |     |     |      |     |     |      |     |        |        |      |      |      |      |     |     | 60<br>18<br>18<br>50 |

#### Ocean

|              | Surface   |        |        |      |       |       |       |    |       |      |   |
|--------------|-----------|--------|--------|------|-------|-------|-------|----|-------|------|---|
| Frecuency    | Monthly   |        |        |      |       |       |       |    |       |      |   |
| Model/Vble   | Period    | hfns   | rss    | shfo | swhfo | tauxo | tauyo | wo | zoh   | zmlo |   |
| CCCma-CanCM3 | 1979 2008 |        |        |      |       |       |       |    | 120   | 120  |   |
| CCCma-CanCM4 | 1979 2008 |        |        |      |       |       |       |    | 120   | 120  |   |
| JMAMRI-CGCM1 | 1979 2010 |        |        |      |       |       |       |    | 128   | 128  |   |
| JMAMRI-CGCM2 | 1981 2010 | 120    | 120    |      |       |       |       |    | 120   | 0    |   |
| MIROC5       | 1979 2011 | 132    | 131    |      |       |       |       |    | 132   | 132  |   |
| Total Files: |           | 252    | 251    |      | 0 (   | 0     | D     | 0  | 0 620 | 500  | 1 |
|              | Levels    |        |        |      |       |       |       |    |       |      |   |
| Freework     | Monthly   |        |        |      |       |       |       |    |       |      |   |
| Frecuency    |           |        |        |      |       |       |       |    |       |      |   |
| Model/Vble   | Period    | thetao | saltfo | SO   | uo    | vo    |       |    |       |      |   |
| CCCma-CanCM3 | 1979 2008 | 120    |        | 12   | 0 120 | 12    | D     |    |       |      |   |

# Let's download some data

16

• Username: <u>user.chfp@gmail.com</u> Password: hindcast

## Some useful links

CHFP: <u>chfps.cima.fcen.uba.ar</u>

Panoply: www.giss.nasa.gov/tools/panoply/

NCO tools: nco.sourceforge.net

# **Quick introduction to NCO tools**

Cut files (along the dimension of a variable): ncks

Example: Want to keep only latitudes from 0 to 20N \$ ncks –d latitude,0.,20. [input file] [output file]

Merge files: ncrcat \$ ncrcat precip\* precip\_merged.nc