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Earth System Predictability
East Asian paleo summer monsoon
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Basic Concepts

® Climate prediction (or forecast)

A climate prediction is the result of an attempt to produce (starting from a particular state of the climate
system) an estimate of the actual evolution of the climate in the future, for example, at subseasonal, seasonal,
interannual or decadal time scales. Because the future evolution of the climate system may be highly sensitive
to initial conditions, such predictions are usually probabilistic in nature.

A climate prediction typically proceeds by integrating the governing equations forward in time from
observation-based initial conditions.

® Climate predictability

Climate predictability indicates the extent to which even minor imperfections in the knowledge of the current
state or of the representation of the system limits knowledge of subsequent states. Formally, predictability in
climate science is a feature of the physical system itself, rather than of our ‘ability to make skillful predictions
in practice’

® Climate projection

A climate projection is the simulated response of the climate system to a scenario of future emission or
concentration of greenhouse gases and aerosols, generally derived using climate models.

*Definition from IPCC AR5 @
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Basic Concepts
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The Seamless Weather-Climate Prediction Problem

Physical Basis Initial Boundary Internal Variability Natural forcing vs
for Prediction Condition Condition vs External Forcing Anthropogenic forcing
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International Intercomparison Projects on S2S & S2D Prediction
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International Efforts on S2D
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Subseasonal Variability compared with Interannual variability

CMAP Rainfall
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While the defining variability of a monsoon system
is its seasonal character, its variability about its
typical seasonal evolution is often of most interest
and importance. In the case of the Asian and
Australian summer monsoons, their intraseasonal
character is especially prominent and unique.

The annual standard deviation exhibits strong
variability on either side of the equator, which is a
depiction of the annual meridional migration of the
tropical rainfall band — a fundamental manifestation
of the monsoon.

The IAV, particularly in boreal winter, emphasizes
the connection to ENSO-related SST variability.

The intraseasonal variability (ISV) is as large or
larger than the interannual variability (IAV).

The ISV tends to be relatively most prominent in the
Asian monsoon sector during boreal summer and in
the Australia monsoon sector during austral
summer.
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Subseasonal Variability: MJO and BSISO

. e ® Boreal winter mode
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Subseasonal Variability: Real-time BSISO Indices

Lee, June-Yi, Bin Wang, Matthew C. Wheeler, Xiouhua Fu, Duane E. Waliser, and In-Sik Kang, 2013: Real-time multivariate indices for the boreal
summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dynamics, 40, 493-509
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BSISO1: Canonical Northward Propagating mode

® BSISO1, consisting of EOF1 and EOF2, represents the canonical northward and north-eastward propagating
ISO over the ASM region during the entire warm season from May to October with quasi-oscillating periods of 30-60

days in conjunction with the eastward propagating MJO.

® Spatial Characteristics: Rossby wave like pattern OLR (shading) and 850-hPa Wind

with a northwest to southeast slope. Out-of-phase
. . . (a) EOF1 (7.2%)
relationship of convection between the ISM and o

WNPSM. Quadrupole pattern in EOF2. 30N -

(b) EOF2 (4.9%)
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BSISO1: Canonical Northward Propagating mode

® BSISO1, consisting of EOF1 and EOF2, represents the canonical northward and north-eastward propagating
ISO over the ASM region during the entire warm season from May to October with quasi-oscillating periods of 30-60
days in conjunction with the eastward propagating MJO.

® Spatial Characteristics: Rossby wave like pattern
with a northwest to southeast slope. Out-of-phase

relatlonshlp of convection between the ISM and Seasonal Cycle of Variance of the First Four PCs

WNPSM. Quadrupole pattern in EOF2. 200
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BSISO1: Canonical Northward Propagating mode

® BSISO1, consisting of EOF1 and EOF2, represents the canonical northward and north-eastward propagating
ISO over the ASM region during the entire warm season from May to October with quasi-oscillating periods of 30-60
days in conjunction with the eastward propagating MJO.

Cross Spectrum

® Spatial Characteristics: Rossby wave like pattern Power Spectra (6 Cross spestrum of PC1, PC2
with a northwest to southeast slope. Out-of-phase  pe : = o
relationship of convection between the ISM and S I Vo s wa— w I
WNPSM. Quadrupole pattern in EOF2. ,'/\j BT °
0.4 S W os| 30-60days |

@® Seasonal cycle of variance: Large overall variance
from May to October. The PC1 has an abrupt _
increase of variance around late April and early — ;.\A%:
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BSISO1: Its Life Cycle

® The BSISO1 convective activity first Life cycle composite of OLR (shading) and
. . 850-hPa wind anomalies
appears over the equatorial Indian 551501
Ocean in Phase 1, and then Given the strong .Ie.ad-lag be.hawor
. of PC1 and PC2, it is convenient to
propagates northeastward reaching diagnose the state of BSISO1 as a
the Indian Subcontinent in Phase 3 point in the two-dimensional phase
and the Bay of Bengal in Phases 4- space.
5.
(a) BSISO1
® The convection over the equatorial 2 & Een et
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BSISO2: The Asian Pre-Monsoon and Onset Mode

® BSISO2, consisting of EOF3 and EOF4, captures the northward/northwestward propagating variability with periods of
10-30 days during primarily the pre-monsoon and monsoon-onset season that is not related with the eastward
propagating MJO.

® Spatial Characteristics: Elongated and front-like OLR (shading) and 850-hPa Wind
pattern with a southwest to northeast slope. In-
phase relationship of convection between the ISM
and WNPSM. 3ON{ Qs

(a) EOF3 (3.8%) (b) EOF4 (3.5%)
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BSISO2: The Asian Pre-Monsoon and Onset Mode

® BSISO2, consisting of EOF3 and EOF4, captures the northward/northwestward propagating variability with periods of

10-30 days during primarily the pre-monsoon and monsoon-onset season that is not related with the eastward
propagating MJO.

® Spatial Characteristics: Elongated and front-like
pattern with a southwest to northeast slope. In-
phase relationship of convection between the ISM

and WNPSM. s Seasonal Cycle of Variance of the First Four PCs
. . PC1
® Seasonal cycle of variance: Maximum variance -y
from late May to early July, corresponding to the I —Pce . - A - - -
pre-monsoon and onset period. o - | | ‘ \ \ |
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BSISO2: The Asian Pre-Monsoon and Onset Mode

® BSISO2, consisting of EOF3 and EOF4, captures the northward/northwestward propagating variability with periods of
10-30 days during primarily the pre-monsoon and monsoon-onset season that is not related with the eastward
propagating MJO.

® Spatial Characteristics: Elongated and front-like Power Spectra Cross Spectrum
pattern with a southwest to northeast slope. In- () Cross spectrum of PC3, PO4
phase relationship of convection between the ISM 082 ';3 — 3 M I
and WNPSM. g - il
B4 5 P TR e E Biweekly
® Seasonal cycle of variance: Maximum variance 30 days
from late May to early July, corresponding to the 0] o g _
pre-monsoon and onset period. BV~
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® Coherence and lead-lag relationship: High @ rea e e
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BSISO2: The Life Cycle

Life cycle composite of OLR (shading) and
850-hPa wind anomalies

than BSISO1. of PC3 and PC4, it is convenient to
diagnose the state of BSISO2 as a
® The BSISO2 initiates at the point in the two-dimensional phase
equatorial western Pacific. The space.
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. . (b) BSISO2
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MJO Predictability and Prediction
Evolution of ECMWF MJO Forecast Skill Score

Bivariate Correlation Skill

MJO Bivariate Correlation N
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BSISO1 Predictability and Prediction

Description of Models and Experiments in ISVHE

3Yi[3 ONETIERSYSTEM

Control __ISOHindcast |
Period Ens No Initial Condition

POAMA15 &24
ABOM (ACOM2+BAMS3) CMIP (100yrs) ~ 1980-2006 10 The first day of every month

CMCC
cmce EChAMs-OPAG2)  CMP(20yrs) 19892008 5 Every 10 days
ECMWF ECMWF (FS+HOPE)  CMIP(11yrs) 19892008 15 Every 15 days

GFDL CM2 (AM2/LM2+MOM4) CMIP (50yrs) 19822008 10 The first day of every month
JMA CGCM CMIP (20yrs)  1989-2008 Every 15 days

6
=T O V! (GFSMOMA) & cup 1oos 19812008 5 Every 10 days
[T crswith RAS scheme  CMIP (13yrs) 19812008 3 The first day of each month

m (SShIl\llilgg(}M sMOM3) CMIP (20yrs) 1989-2008 1 Every 10 days

UH/IPRC UH HCM CMIP (20yrs) 1994-2008 6 Every 10 days

The ISVHE Project

Intraseasonal Variability Hindcast Experiment

The ISVHE is a coordinated multi-institutional ISV hindcast experiment supported by APCC,
NOAA CTB, CLIVAR/AAMP, YOTC/MJIO TF, and AMY.

TWO-TIER SYSTEM
18O Hindcast

Control
Period Ens No Initial Condition

EEE CVVBAGCM AMIP(25yrS 19812005 10 Every 10 days
MRD/EC GEM AMP (21yrs) 19852008 10 Every 10 days
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BSISO1 Predictability and Prediction

The Predictability and prediction skill in BSISO in (a) strong and (b) weak BSISO initial condition
(b)
60
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0- 0-
ABOM1 ABOM2 ECMWF JMAC ~ CMCC  CFS2 ABOM1 ABOM2 ECMWF JMAC ~ CMCC  CFS2

Days

—e— Ensemble—mean predictability
—e— Single—member predictability
=== Ensemble—mean prediction skill
e Single—member prediction skill

Strong BSISO IC Weak BSISO IC Lee et al. 2015 Clim Dyn
ArrlEgon sl RERNEER ~2 weeks Based on Intraseasonal Hindcase Experiment (ISVHE
Predictability ~ bweeks ~6 weeks
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BSISO Real-time Monitoring and Forecast at APCC

APEC CLIMATE CENTER

* &-month Forecast

+ PastForecast

+ BSISO Forecasts

+ State of our climate

¢ CLIK

+ TRACE

Contact us Sitemap Register Login

Service

&-month Forecast | PastForecast BSISOForecasts | State ofourclimate | CLIK  TRACE

Home »Service = BSISO Forecasts > Forec

Forecasts

Welcome to the Boreal Summer Intraseasonal Oscillation [BSISO) forecast website. The BSISO forecast activity has been
initiated in 2013 with the goal of improving our ability to understand and forecast the BSISO based on numerical models in
cooperation with the CAS/WCRP Working Group on Numerical Experimentation [WGNE) Madden Julian Oscillation [MIC) Task
Force, and hosted at the APEC Climate Center (APCC). This website will be updated as additional models become available and
verificstion statistics and various ways of displaying forecast information genersted. Below sre links to the BSISO monitoring
website and the MJO moel forecasts

85150 Realtime Monitoring
Operational Realtime Dynamical Model MJO Forecasts

| Dynamical Model BSISO Forecasts

Akey for the label headings in the figure box is provided below.

Note: Move curser over product name to display. Click for additional information

BSISO Monitoring and Real-time forecast hosted by
APCC and endorsed by WMO WGNE and MJOTF

Forecast are from five operational models in ECMWF and
UKMO in Europe, NCEP in USA, and CWB in Taiwan

Reconstructed OLR anomaly
based on the BSISO indices (27May2015)
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BSISO Real-time Monitoring and Forecast at APCC

In cooperation with the WGNE MJO TF, APCC has hosted real-time monitoring and forecast
of BSISO indices since 2013 summer.

Participating Institutes

Climate Forecast T126
System 4 40 days Once a day Léd
Global Forecast T574,T190
NCEP System 1 16 days Once a day L4
GF 'OWQB;@”;ﬂe 20 35 days ASAP
POAMA 2.4 multi- ; T47
Australia week model 33 40 dlaygs L L17
ECMWF Ensemble 51 39 davs TR A i T639, 1319
ECMWF Prediction System ¥ & L62
460km
UK Met Office MOGREPS-15 24 15 days Once a day L70
Taiwan CWB CWBEPSTII? ] 40 days From 2015
CMC GEMDM_400x200 20 15 days ASAP

&
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BSISO Real-time Monitoring and Forecast at APCC

ECMWEF Forecast

NCEP CFS Forecast

Note: Move cursor over product name to display. Click for additional information.

Marmalized PC1

Phase Plots of BSISO Index Forecasts

BSISO Forecast for 18June2015-7July2015

BSISO 1 BSISO 2
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Note: Move cursor over product name to display. Click for additional information.

Narmalized PC1

Phase Plots of BSISO Index Forecasts

BSISO Forecast for 20June2015-3July2015

BSISO 1
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BSISO Real-time Monitoring and Forecast at APCC

Assessment of real-time forecast skill for the BSISO1 and
BSISO2 during May-October for 2013-2014

BSISO 1 BSISO 2
10 -Correlation 10 -Correlation
0 RMSE tu-w
o0 % - % Models have a useful forcast skill of 0.5
Amplitudeemor Amplitade cror for BSISO1 (BSISO2) up to 10-20 days
° m (10-16 days) for the two years of 2013-
087 081 i 2014.
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Summary of Part 11

® Given the extreme importance of the BSISO, we have made an effort to define new indices to assist in real-time
monitoring and forecast applications of the BSISO. The BSISO indices proposed in this study were designed to
better represent fractional variance and the observed northward/northwestward propagating ISO over the ASM
region than the RMM index.

® BSISO1, consisting of EOF1 and EOF2, represents the canonical northward and north-eastward propagating
ISO over the ASM region during the entire warm season from May to October with quasi-oscillating periods of
30-60 days in conjunction with the eastward propagating MJO.

® BSISO2, consisting of EOF3 and EOF4, captures the northward/northwestward propagating variability with
periods of 10-30 days during primarily the pre-monsoon and monsoon-onset season.

® The ISVHE has been coordinated to better understand the physical basis for prediction and determine
predictability of ISO. Analysis of ISVHE data indicates that the BSISO1 is predictable up to 6 weeks but the state-
of-the-art coupled models have a useful skill of 0.5 for the BSISO1 and BSISO2 up to 15-20 days and 10-15 days,

respectively.
é
P
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Estimation of Predictability

How to determine predictability of seasonal climate anomalies
remains an unresolved issue!

We propose a hew way to estimate seasonal climate predictability
based on the Predictable Mode Analysis (PMA), an integral

approach combining empirical analysis, physical

reasoning and prediction (wang et al. 2007, 2013, 2015; Lee et al. 2011,
2013; Lee and Wang 2012; Lee and Ha 2015; and many others).
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1. Conventional S/N Ratio Approach using One Model

The conventional signal-to-noise ratio approach is highly model-dependent (Charney and Shukla 1981;

Shukla 1998; Rowell et al. 1998; Kang et al. 2004; Kang and Shukla 2006 and many others).

Signal-to-noise ratio for JJA Precipitation
(b) NASA

v Total Var = Signal Var ( s ) + Noise Var ( 9 )
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2. Mean Square Error (MSE) method based on multi models

(Kumar et al. 2007, J Climate)

Predictability limits for seasonal climate variability depend on the fraction of external and internal variability.
From the observed data alone, separation of the total seasonal variance into its external and internal components
remains difficult and controversial issue.

P Basic Idea: The expected value of MSE is the sum of three terms: the observed internal variability, the internal
variability of the ensemble mean of model simulations, and a term that is the error in model’s anomaly prediction. We can
find the minimum value of MSE irrespective of which model it came from at each geographical location, and the spatial
map of the minimum value of MSE is the best estimate for the observed internal variability.

MSE =(M -0) =0, +0,,+< (i, —H,)" >

P Limitation: Since models have large anomaly errors related to slowly varying boundary forcing, the estimation always
underestimates predictability.

May 30t", 2019, CITES-2019 School



3. Predictable Mode Analysis (PMA) method

(Wang et al. 2007, 2013, 2015; Lee et al. 2011, 2013; Lee and Wang 2012; Lee and Ha 2015; and many others)

The PMA is an integral approach combining empirical analysis, physical reasoning and prediction.

® The empirical analysis detects most important patterns

® The understanding of physical processes governing these patterns
establishes their physical basis

® The empirical and dynamical models’ predictions determine

predictable modes.

» The potential predictability can then be estimated by the fractional variance accounted for by the
“predictable” modes.

P Limitation: The method depends on the identification method of predictable modes and models’
quality for capturing major modes of the observed variability.
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Application of the PMA

(Wang et al. 2007, 2013, 2015; Lee et al. 2011, 2013; Lee and Wang 2012; Lee and Ha 2015; and many others)

The percentage variances that are accounted for by the observed first 7 modes and the
skill score on predicting the modes by one-month lead MME.
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Application of the PMA to Asian Summer Precip Predictability

The temporal correlation coefficient (TCC) skill of MME for JJA precipitation
Initiated from June 15t for 1979 - 2010

\
A
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60S
0

09 Correlation Coefficient
The TCC skill for JJA precipitation prediction using the four coupled models’ multi-model ensemble (MME) initiated from the first day of June for the 32
years of 1979-2010. Blue box indicates the Asian Summer monsoon (ASM) region used in this study (20°S-40°N, 40°E-160°E) and the number in the
upper-left corner of the blue box is the averaged TCC skill over the AAM region. @




Application of the PMA to Asian Summer Precip Predictability

® The empirical analysis detects the four major modes of ASM precipitation variability.
® The understanding of physical processes governing these patterns establishes their physical basis
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Application of the PMA to Asian Summer Precip Predictability

® The four major modes can be predicted
reasonably well by a physical-empirical
prediction model as well as the
atmosphere-ocean coupled models’ multi-
model ensemble (MME).

® The empirical and dynamical coupled
models have comparable prediction skills
and complementary strengths in predicting
the ASM precipitation.
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Application of the PMA to Asian Summer Precip Predictability

The temporal correlation coefficient (TCC) skill
for JJA precipitation
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Predictability for JJA Precip Estimated by the PMA and MSE Method

Fractional signal variance (the predictable part of total variance)
1979-2010

Seae-
PP
o .,

‘\
-------

------

_____

......

120E

60E 90E 120E 150E 90E 150E

— ] | [ T T

5 10 20 30 40 60 80
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Application of the PMA to Asian Winter Temperature Predictability
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Application of the PMA to Asian Winter Temperature Predictability
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Application of the PMA to Asian Winter Temperature Predictability

The TCC skill of MME (1982-2002)
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Summary of Part 111

® We introduce a Predictable Mode Analysis (PMA) method to estimate the seasonal climate predictability. The
PMA is an integral approach combining empirical analysis, physical reasoning and prediction.

® The empirical analysis detects most important patterns; the understanding of physical processes governing
these patterns establishes their physical basis; and the empirical and dynamical models’ predictions determine
predictable modes. The potential predictability can then be estimated by the fractional variance accounted for
by the “predictable” modes.

® For the Asian summer monsoon precipitation variability, we identify four major modes of variability by analysis
of the 1979-2010 observation: (1) El Nifio and Southern Oscillation (ENSO) developing mode, (2) Indo-Pacific
coupled mode which is sustained by a positive thermodynamic feedback with the aid of background mean flows
and mean precipitation, (3) the Indian Ocean dipole (I0D) mode, and (4) trend mode. If these four modes are
perfectly predicted, about 47% of the total variance can be captured over the entire Asian summer domain base
on the PMA

&
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Summary of Part III

® The first four observed EOF modes of DJF TS variability explain 69% of the total variability and are
statistically separated from other higher modes. We identify these as predictable modes, because they
have clear physical meaning and the MME and empirical model reproduce them with acceptable criteria.
The MME skill basically originates from the models’ ability to capture the predictable modes.

® The MME shows better skill for the first mode, represented by a basin-wide warming trend, and for
second mode related to the Arctic Oscillation. However, the statistical model better captures the third
and fourth modes, which are strongly related to ENSO variability on interannual and interdecadal
timescales, respectively. Independent statistical forecasting for the recent 11-year period further
reveals that the first and fourth modes are highly predictable. The second and third modes are less
predictable due to lower persistency of boundary forcing and reduced potential predictability during the

recent years. In particular, the notable decadal change in the monsoon—ENSO relationship makes the
statistical forecast difficult.

&
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Purpose of the Current Study in ICCP

® This study aims to assess multi-year predictability for total soil water and wildfire occurrence
over the Globe using the multi-year dynamical prediction system based on the Community
Earth System Model and to better understand sources of their predictability.

Description of Data, Model and Experiments

® CPC Soil Moisture v2 * AR with global 3-D ocean
(1958-2015) temperature & salinity fields
® Palmer Drought from ECMWF ORA-S4 (1958-
Severity Index (PDSI) 2015)
(1958-2014) -
(FWI) from GFWED H3.75°/L26 AR for 10-year long
(Field et al 2015) (1982-
2015 OCN: integration (1958-2015)
) H3°/L60
® Natural & LAND: ® Historical run (1850-2005)
anthropogenic H3.75°/L10 ® IPCC RCP 4.5 run (2006-
radiative forcing 2030)

* Definition of water year: October of the previous year to September
® Data analysis period: 1960-2015 @

RCE emﬁ
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Variability and Trend of Total Soil Water

. There are significant interannual to interdecadal variability and long-term trend in total soil water
averaged from surface to 3-m depth over the many parts of the globe.

- There is a significant negative correlation between the TSW and Drought Severity.

CPC water-year mean total soil water (TSW; ~3m)
(1960-2015)

Correlation between
CPC TSW and Palmer drought severity index
(Water-year Mean/1960-2014)
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Variability and Trend of Total Soil Water

. There are significant interannual to interdecadal variability and long-term trend in total soil water
averaged from surface to 3-m depth over the many parts of the globe.

- There is a significant negative correlation between the TSW and Fire Weather Index.

CPC water-year mean total soil water (TSW; ~3m)
(1960-2015) - S
Correlation Coefficient between CPC TSW and GFWED FWI
Water-year mean, 1982-2015
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Sources of Multi-year Predictability

. The important sources for multi-year predictability of TSW include the low-pass filtering characteristics
of soils, the anthropogenic radiative forcing, and the Trans-basin variability (TBV) between the Atlantic
and Pacific SST.
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Sources of Multi-year Predictability

. Soils act as an integral and natural low-pass filter of white noise precipitation
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Sources of Multi-year Predictability
. Long-term trend also provides near-term predictability

CPC water-year mean TSW (~3m)
(1960-2015)
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Sources of Multi-year Predictability

. The Trans-basin variability (TBV) between the Atlantic and Pacific SST is the key source of multi-
year predictability for water-year mean TSW over the many parts of the globe.

The positive TBV phase: the relatively warmer SST over the
Atlantic than the Pacific

SST-based index SST-based index
(Chikamoto et al. 2014) (McGregor et al. 2014)

SST & SLP rel;gressed on 1:BV index
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Sources of Multi-year Predictability

. The Trans-basin variability (TBV) between the Atlantic and Pacific SST is the key source of multi-
year predictability for water-year mean total soil moisture over the many parts of the globe.

TBV Composite Difference . PDSI(1960-2014)
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Assimilation Results: TBV Impacts

. Assimilation (AR) with global SST using CESM well captures the observed TBV variation.

Water year (Oct~Sep) Normalized Time Series
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Assimilation Results: TBV Impacts

. Assimilation (AR) with global SST using CESM is capable of captures the global impact of TBV

TBV Composite Difference (Water-year Mean)
Reanalysis/ Reconstruction Assimilation (AR)
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Potential Multi-Year Prediction Skills (IR)

. The dynamical prediction system is capable of capturing TSW and fire season length anomalies 2~4 years ahead
particularly over southwestern North America. Antrhopogenic radiative forcing also contributes to the recent long-
term trend of two variables.

Predictability of TSW and Fire Season Length Over
Southwestern North America
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Summary of Part IV

® Severe drought and increased change in wildfire occurrence have significant impacts to a wide range of
sectors such as agriculture, energy, food security, forestry, drinking water and tourism. This study aims
to assess multi-year predictability for total soil water and wildfire occurrence over the Globe using
the multi-year dynamical prediction system based on the Community Earth System Model and to
better understand sources of their predictability.

® The important sources of multi-year predictability for soil water include the the low-pass filtering
characteristics of soils, the anthropogenic radiative forcing and Trans-basin variability (TBV) between
the Atlantic and Pacific SST. In particular, the positive phase of TBV, characterized by the relatively
warmer SST over the Atlantic than the Pacific, is favorable for less precipitation, less soil water, drought,
and more wildfire occurrence over the southern part of North and South America, the northern part of
South Africa and many parts of Europe and Asia.

® The dynamical prediction system has a high potential skill in forecasting total soil water and fire
season length up to 274 year lead time over many parts of the Globe. However, the actual skill of the
system is very limited yet with respect to reanalysis/reconstruction data. @

RCC A
~ May 30th, 2019, CITES-2019 School eb




B B
1|‘orS (gierrr:;[teer Physics R C @S

RESEARCH CENTER FOR CLIMATE SClI




