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Introduction – Sources of uncertainty

■ Conceptual illustration : Uncertainties in weather predictions

Figure 2 from Slingo and Palmer (2011) : illustration of sources of uncertainty in a 
probabilistic weather forecast
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■ But in seasonal forecasts, there are additional sources of 
uncertainty

Introduction – Sources of uncertainty

Figure 8 from Slingo and Palmer (2011) : illustration of sources of uncertainty in a 
probabilistic seasonal forecast with (a) model biases and (b) a changing climate
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Introduction – Sources of uncertainty

Goal of this lecture :

― Provide an overview of the different sources of uncertainty 
in seasonal forecasting

― Discuss some strategies used in state-of-the-art seasonal 
forecasting systems to deal with these uncertainties
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Lecture outline

■ Dealing with uncertainties in initial conditions

■ Dealing with uncertainties in numerical models

― Multi-model approach

― Stochastic perturbations

■ Dealing with uncertainties in seasonal forecast 
evaluations

■ Communicating uncertainties in seasonal forecasts
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Lecture outline
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Multi-model approach
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Dealing with uncertainties in seasonal forecast 
evaluations

Communicating uncertainties in seasonal forecasts
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The Lorenz attractor (1963)

■ Lorenz (1963) : Introduction of 
chaos theory in meteorology

■ Very simple model (non-linear 
equations)

■ Small errors in initial conditions 
could lead to very large 
uncertainties in the time evolution 
on the Lorenz attractor

■ Depending on the initial phase, the 
growth of uncertainty (and hence 
predictability) differs greatly.

■ Limits of predictability in a 
deterministic framework : typically 
10-15 days
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Consequence : ensemble prediction

■ Probabilistic weather forecasts : generated with small random 
perturbations to the atmospheric initial conditions

■ Conversely, when dynamical seasonal forecasts were first 
developed, these were constructed as ensemble forecasts
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Consequence : ensemble prediction

■ Global reanalyses for the atmosphere, land, ocean provide initial 
conditions over a range of past years ; corresponding analyses 
are used for real time initialization

■ Ensemble generation techniques for initialization vary depending 
on the institute, but generally use one of the following:

― Lagged initialization: (Hoffman and Kalnay, 1983) 
ensemble members are initialized using different sets of 
initial conditions separated by 6 hours, one day, one week… 
or combinations of these for the atmosphere / ocean

― Initial condition perturbation: (Kalnay, 2003) atmosphere 
or ocean (re)analysis + small perturbation

― Ensemble assimilation : similar to the previous method, but 
members directly derived from the members of an ensemble 
assimilation technique
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Consequence : ensemble prediction

■ Examples :

― ECMWF SEAS5: atmosphere and some land fields are 
perturbed using EDA perturbations from 2015, as well as 
leading singular vector perturbations ; ocean fields are from 
a 5-member OCEAN5 analysis + SST pentad perturbations 
(Johnson et al. 2019)

― CFSv2: lagged initialization with 4 runs per day every five 
days for the 9-month forecasts, 1 run per day for 1-season 
forecasts (Saha et al. 2014)

― Météo-France System 6: lagged initialization with start dates 
on the 20th, 25th of the previous month, 1 control member 
on the 1st
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Lecture outline

Dealing with uncertainties in initial conditions

■ Dealing with uncertainties in numerical models

― Multi-model approach

― Stochastic perturbations

Dealing with uncertainties in seasonal forecast 
evaluations

Communicating uncertainties in seasonal forecasts
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Uncertainties in numerical models

■ Example: CNRM-CM model co-developed by CNRM and 
CERFACS (Voldoire et al., 2019)

Atmosphere: ARPEGE Climat 
climate model, typically run at 
resolutions ~1.4° (~0.5° in 
System 6)

Land surface: SURFEX interface

Ocean: NEMO v3.6 on ORCA1 
tripolar grid

Coupler: OASIS MCT
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Uncertainties in numerical models

■ Numerical models are implemented on finite grids 

→ numerical approximations of the equations defining the time 
evolution of physical fields (e.g. Navier-Stokes equations for 
ocean and atmosphere) : time stepping, splitting of integration of 
seperate tendencies...

→sub-grid scale phenomena often need to be parameterized in 
GCMs (e.g. triggering of convection…)

→ example : lower resolution models have a 
coarser topography and don’t represent well 
the impact of orography on large-scale flow
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Uncertainties in numerical models

■ Coupling different model components inevitably leads to further 
sources of model uncertainty

― Representing fluxes between components

― Coupling frequency of GCMs is restricted by computational 
costs

― Limited availability of reference data (field campaigns)
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Uncertainties in numerical models

■ These model limitations inevitably lead to model-dependent and 
flow-dependent errors that are difficult to correct a posteriori in 
seasonal forecasts

■ So how can we deal with these sources of uncertainty?

Two strategies discussed here:

― Multi-model approach: use several models as a means of 
quantifying errors related to model choices

― Stochastic methods: introduce in-run perturbations 
accounting for model error
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Multi-model approach

■ Seminal papers: Krishnamurti et al. 1999 & 2000, Doblas-Reyes 
et al. 2000, Hagedorn et al. 2005

■ Simple idea: combining ensemble forecasts from different, 
independant models as a way of estimating the uncertainty 
resulting from model error

■ 3 straightforward ways to construct a multi-model ensemble:

― Equally weighted members (Hagedorn et al. 2005)

― Multi-model mean (equally weighted models)

― Weighted ensemble, with weights depending on model 
performance for given criteria over the hindcast period 
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Multi-model mean

■ Assumption: no particular 
model is more likely to 
represent the truth than 
any other in the multi-
model

■ Works well if levels of 
performance are similar

Fig. 3 from Mishra et al. 2019 
showing at a gridpoint level the 
system with highest correlation, 
and correlation value, for 
EUROSIP hindcasts for DJF and 
JJA at lead times 2-4 months.
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Weighted ensemble

■ Several methods to determine weights have been applied in 
past studies:

― Minimization of Ignorance score (Weigel et al. 2008)

― Bayesian approaches (e.g. forecast assimilation, 
Stephenson et al. 2005)

― Multiple linear regression techniques

― Using correlation as weights (Mishra et al. 2019)

■ Due to very short verification periods, and some co-linearity 
between the different forecasts, there is a large uncertainty in 
the weights derived from such techniques.

■ To avoid over-fitting of some techniques, cross-validation is 
necessary, and if possible, separating learning and verification 
periods. 
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Some results (Batté and Déqué 2011,
ENSEMBLES project)

Fig. 6 from Batté and Déqué 2011 showing the RMSE vs ensemble spread of single 
models and multi-model ensemble (equal weights) for the ENSEMBLES project 1960-
2005 seasonal hindcasts for JJA precipitation over West Africa (a) and DJF precipitation 
over southern Africa (b)
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Some results (Mishra et al. 2019, EUROSIP)

Fig. 10 from Mishra et 
al. 2019 showing near-
surface temperature 
anomaly correlation with 
ERA-Interim in winter 
and summer EUROSIP 
multi-model hindcasts 
(1992-2012), using 3 
different multi-model 
combination methods.
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Some results (Min et al. 2014, APCC)

Figs. 4 and 6 from Min et al. (2014)
Top: surface temperature pattern correlation vs 
NCEPv2 for individual models (crosses) and the 
MME (red squares) for JJA and DJF APCC 
hindcasts over 1983-2003. The dashed blue line 
is the absolute value of the Nino 3.4 index.
Right: zonal mean time correlation for surface 
temperature with NCEPv2 for multi-model mean 
(SCM) and several multi-model weighting 
techniques.
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Stochastic perturbations

■ Assumption: seperation between predictable processes and 
unresolved scales that are represented by noise (Hasselmann, 
1976)

Fig. 1 from Berner et al. 
(2017) illustrating the 
effects of additive or 
multiplicative (state-
dependent) white noise 
on simple systems, and 
associated PDFs 
obtained.
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Stochastic perturbations

■ Review paper on stochastic parameterizations in weather and 
climate models: Berner et al. (2017)

■ Most common approaches in S2D forecasting:

― Random perturbation (white noise or other)

― Upscaling/backscatter algorithms

― Approaches close to random flux corrections

■ Not only restricted to the atmosphere (focus in this talk)

― Sea ice (e.g. Jüricke et al. 2013)

― Ocean (e.g. Zanna et al. 2018)

― Land surface (e.g. MacLeod et al. 2016)
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SPPT : Stochastically Perturbed 
Parameterization Tendencies

■ Introduced by Buizza et al. (1999) into the IFS (ECMWF)

■ Empirical method, straightforward to implement

■ Time and space correlated multiplicative noise perturbs the net 
tendencies of the physical parameterizations in the atmospheric 
model

Xp = (1+r)X ; X = u, v, T, q

Spectral coefficients of r are 
defined by an AR(1) process 
forced with gaussian random 
numbers. The same r is used 
for all variables and model 
levels.
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SPPT

■ Results with EC-Earth → Batté and Doblas-Reyes (2015)

■ 2 types of patterns used : 

― similar combination of time/space scales as ECMWF 
(System 4) → SPPT3

― combination of two larger time/space scales to favor monthly 
and seasonal time scales → SPPT2L



L. Batté - Uncertainties - CITES 2019 School (Moscow, 31 May 2019)Page 28

SPPT

■ Results with EC-Earth → Batté and Doblas-Reyes (2015)

Impact of SPPT on the 
spread of SST re-forecasts 
with EC-Earth3 : relative 
spread with respect to a 
reference experiment with 
initial perturbations only.

Adapted from fig. 5 from 
Batté and Doblas-Reyes 
(2015)
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SPPT

■ Results with EC-Earth → Batté and Doblas-Reyes (2015)

Impact of SPPT on the Brier 
score and reliability / 
resolution components for 
Nino 3.4 SST re-forecasts 
with EC-Earth3.

Adapted from figs. 10-11 
from Batté and Doblas-
Reyes (2015)
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Stochastic backscatter scheme (SKEB)

■ References: Shutts (2005), Berner et al. (2009)

■ Aim: account for upscale energy transfer from unbalanced flow 
(convection, gravity waves), as well as turbulence

■ Formulation: perturbation of streamfunction 

■ Introduced in ECMWF seasonal prediction System 4 with SPPT

■ Similar schemes have been used at NWP scales (ECMWF, UK 
MetOffice...)
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Stochastic perturbations in ECMWF forecasts

■ Results with ECMWF Sys4 (Weisheimer et al. 2014)

ECMWF System 4 stochastic 
physics (SPPT + SKEB) 
impact on North Pacific / 
American region winter (DJF) 
weather regime frequency 
and patterns for hindcasts 
initialized on 1st of 
November 1981-2010.

Fig. 9 from Weisheimer et al. 
(2014)
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At CNRM : stochastic perturbations of model 
dynamics

■ Idea: 

― Use atmospheric relaxation (nudging) as a means of 
estimating model error in the prognostic variables

― Run relaxed re-forecasts to build a population of model error 
estimates

― Apply randomly sampled model error corrections back into 
the model during the seasonal forecast integration

■ References: Batté and Déqué (2012, 2016)
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At CNRM : stochastic perturbations of model 
dynamics

■ Each ensemble member has it’s own set of model corrections, 
thus generating ensemble spread

■ The amplitude of the perturbations depend (although not 
linearly) on the strength of the relaxation in the 1st step run

■ Different ways to draw random model corrections among the 
sample:

― Series of consecutive days → example: 5 days

― Using monthly mean corrections

― Randomly changing corrections every 6 hours / every day...
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■ Batté and Déqué (2016): Impacts of these perturbations on 
CNRM-CM (pre-CMIP6 version of ARPEGE-Climate)

At CNRM : stochastic perturbations of model 
dynamics

Auto-correlation of 
850 hPa specific 
humidity, 
temperature, and 
500 hPa 
streamfunction at 
lags of 1, 3 and 5 
days.

Fig. 3 from Batté and 
Déqué (2016)
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At CNRM : stochastic perturbations of model 
dynamics

■ In Batté and Déqué (2016), 3 sets of experiments (NDJF 1979-
2012) are compared. REF with initial perturbations only, SMM 
with monthly mean perturbations, and S5D with perturbations 
drawn from 5 consecutive days

Impact of stochastic 
perturbations on 
systematic errors for 
Z500 ; biases 
develop more slowly 
in the SMM and S5D 
experiments
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At CNRM : stochastic perturbations of model 
dynamics

■ As for Weisheimer et al. (2014), improvements are found in 
weather regime representation with the introduction of these 
perturbations.

■ The NAO correlation is also improved, although differences are 
not significant.
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L. Batté - Uncertainties - CITES 2019 School (Moscow, 31 May 2019)Page 38

Scores, noise, and how to deal with this

■ See A. Munoz and D. Hudson’s lectures

■ Verification: comparison between re-forecast (past cases) and 
reference data (observations, reanalyses)

■ Limited samples mean that verification metrics are necessarily 
uncertain

■ But a larger number of past cases means going back to periods 
when reference data was sparse and also more uncertain!

■ Some methods can provide some insight into the uncertainty in 
the skill evaluations of seasonal forecasts:

― Sub-sampling of ensemble members / years

― Bootstrap

― Statistical significance tests → but beware of over-
interpretation! (see Wilks, 2016)
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Illustration: the North Atlantic Oscillation

NAO+ NAO-

Mean impacts observed during positive and negative NAO phases in winter.
Source: UK Met Office, adapted from Gardiner and Herring (NOAA)
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Recent studies show promising skill...

Fig. 1 from Athanasiadis et al. (2017) showing ERA-Interim and re-forecast DJF NAO index 
(Nov. initializations) computed following Li and Wang (2003).
The multi-model correlation is 0.85.
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Uncertainties in evaluation of NAO predictability

■ Ensemble size and signal-to-noise issues

― How many ensemble members are necessary to represent the 
intrinsic variability of the phenomena?

― What are the the confidence intervals around the estimates?
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Uncertainties in evaluation of NAO predictability

■ Length of the hindcast

― Under- or over-estimation of NAO predictability in the last decades? 
(Eade et al. 2014, Shi et al. 2015)

― Role of multi-decadal variability in recent levels of skill? (O’Reilly et al. 
2017)

Correlation of NAO and PNA indices with ERA-20C in atmosphere-only winter re-forecasts 
over 1900-2010 with IFS forced by HadISST (Source : O’Reilly et al. 2017)
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Lecture outline

Dealing with uncertainties in initial conditions

Dealing with uncertainties in numerical models

Multi-model approach

Stochastic perturbations

Dealing with uncertainties in seasonal forecast 
evaluations

■ Communicating uncertainties in seasonal forecasts



L. Batté - Uncertainties - CITES 2019 School (Moscow, 31 May 2019)Page 44

Communication of uncertainty is key!

But how you communicate it 
may not be very 
straightforward...

Example: 6 different ways of 
providing ensemble seasonal 
forecasts of river flows to 
potential users.

Adapted from Fig.1 of Taylor et 
al. (2015)
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Conclusion – Dealing with uncertainties

Model uncertainty:
- MME approach
- Stochastic perturbations

Ensemble forecasts to deal with 
initial condition uncertainties

Figure 2 from Slingo and Palmer (2011) : illustration of sources of uncertainty in a 
probabilistic weather forecast

Verification 
uncertainty:
- Robust ensemble 
sizes and re-forecast 
length (not easy...)
- Estimates of levels 
of uncertainty
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Thanks a lot for your attention!
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Further reading...

On ensemble forecasting:

• Hoffman and Kalnay (1983) Lagged average forecasting, an alternative to Monte Carlo forecasting. 
Tellus, 35A: 100-118.

• Kalnay (2003) Atmospheric predictability and ensemble forecasting. In Atmospheric Modelling, Data 
Assimilation and Predictability, chapter 6. Cambridge University Press.

• Lorenz (1963) Deterministic nonperiodic flow. J. Atm. Sc., 20: 130-141.
• Slingo and Palmer (2011) Uncertainty in weather and climate prediction. Phil. Trans. R. Soc. A 369: 

4751–4767.

On GCMs / seasonal forecasting systems:

• Johnson, Stockdale, Ferranti et al. (2019) SEAS5 : the new ECMWF seasonal forecast system. 
Geosci. Model Dev., 12, 1087-1117.

• Saha et al. (2014) The NCEP Climate Forecast System Version 2, J. Climate, 27: 2185-2208.
• Voldoire et al. (2019) Evaluation of CMIP6 DECK experiments with CNRM-CM6-1, J. Adv. Mod. 

Earth Sys., accepted.
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Further reading...

On multi-model ensembles:

• Athanasiadis et al. (2017) A multi-system view of wintertime NAO seasonal predictions. J. Climate, 
30: 1461-1475.

• Batté and Déqué (2011) Seasonal predictions of precipitation over Africa using coupled ocean-
atmosphere general circulation models : skill of the ENSEMBLES project multi-model ensemble 
forecasts. Tellus, 63A: 283–299.

• Doblas-Reyes et al. (2000) Multi-model spread and probabilistic seasonal forecasts in PROVOST. 
Q. J. Roy. Meteorol. Soc. 126 (567): 2069-2087.

• Hagedorn et al. (2005) The rationale behind the success of multi-model ensembles in seasonal 
forecasting – I. Basic concept. Tellus, 57A(3): 219-233.

• Krishnamurti et al. (1999) Improved weather and seasonal climate forecasts from multimodel 
superensembles. Science, 285(5433): 1548-1550.

• Krishnamurti et al. (2000) Multimodel ensemble forecasts for weather and seasonal climate. J. 
Climate, 13(23):4196–4216.

• Mishra et al. (2019) Multi-model skill assessment of seasonal temperature and precipitation 
forecasts over Europe. Clim. Dyn., 52(7-8): 4207-4225.

• Min et al. (2014) Assessment of APCC multimodel ensemble prediction in seasonal climate 
forecasting: Retrospective (1983–2003) and real-time forecasts (2008–2013), J. Geophys. Res. 
Atmos., 119: 12,132–12,150.

• Stephenson et al. (2005) Forecast assimilation : a unified framework for the combination of multi-
model weather and climate predictions. Tellus, 57A(3): 252-264.

• Weigel et al. (2008) Can multi-model combination really enhance the prediction skill of probabilistic 
ensemble forecasts? Q. J. Roy. Meteorol. Soc. 134: 241-260.
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Further reading...
On stochastic perturbations:

• Batté and Déqué (2012) A stochastic method for improving seasonal predictions, Geophys. Res. 
Lett., 39: L09707.

• Batté and Déqué (2016) Randomly correcting model errors in the ARPEGE-Climate v6.1 
component of CNRM-CM: applications for seasonal forecasts. Geosci. Model Dev., 9: 2055–2076.

• Batté and Doblas-Reyes (2015) Stochastic atmospheric perturbations in the EC-Earth3 global 
coupled model: impact of SPPT on seasonal forecast quality, Clim. Dyn., 45: 3419–3439.

• Berner et al. (2009) A spectral stochastic kinetic energy backscatter scheme and its impact on flow-
dependent predictability in the ECMWF Ensemble Prediction System, J. Atmos. Sci., 66: 603–626.

• Berner et al. (2017) Towards a new view of weather and climate models, B. Am. Meteorol. Soc., 
• Buizza et al. (1999) Stochastic representation of model uncertainties in the ECMWF ensemble 

prediction system. Q. J. R. Meteorol. Soc. 125: 2887–2908.
• Jüricke et al. (2014) Potential sea ice predictability and the role of stochastic sea ice strength 

perturbations. Geophys. Res. Lett., 41: 8396–8403.
• MacLeod et al. (2016) Improved seasonal prediction of the hot summer of 2003 over Europe 

through better representation of uncertainty in the land surface. Quart. J. Roy. Meteor. Soc., 142: 
79–90.

• Shutts (2005) A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. 
R. Meteorol. Soc., 131: 3079–3102. 

• Weisheimer et al. (2014) Addressing model error through atmospheric stochastic physical 
parametrizations: impact on the coupled ECMWF seasonal forecasting system. Phil. Trans. R. Soc. 
A, 372: 20130290.

• Zanna et al. (2018) Uncertainty and scale interactions in ocean ensembles: From seasonal 
forecasts to multidecadal climate predictions. Q. J. R. Meteorol. Soc., in press.
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Further reading...

On signal-to-noise issues, evaluation and communication of uncertainties:

• Eade et al. (2014) Do seasonal-to-decadal climate predictions underestimate the predictability of 
the real world? Geophys. Res. Lett., 41: 5620–5628.

• O’Reilly et al. (2017) Variability in seasonal forecast skill of Northern Hemisphere winters over the 
twentieth century, Geophys. Res. Lett., 44: 5729–5738.

• Shi et al. (2015) Impact of hindcast length on estimates of seasonal climate predictability, Geophys. 
Res. Lett., 42: 1554–1559.

• Taylor et al. (2015) Communicating uncertainty in seasonal and interannual climate forecasts in 
Europe. Phil. Trans. R. Soc. A, 373: 20140454.

• Wilks (2016) “The stippling shows statistically significant grid points”: how research results are 
routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 
2263–2273.
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