



# Dealing with uncertainties in seasonal predictions

Lauriane Batté (CNRM, UMR 3589 Météo-France & CNRS, Université de Toulouse, France)



### **Introduction – Sources of uncertainty**



Conceptual illustration : Uncertainties in weather predictions

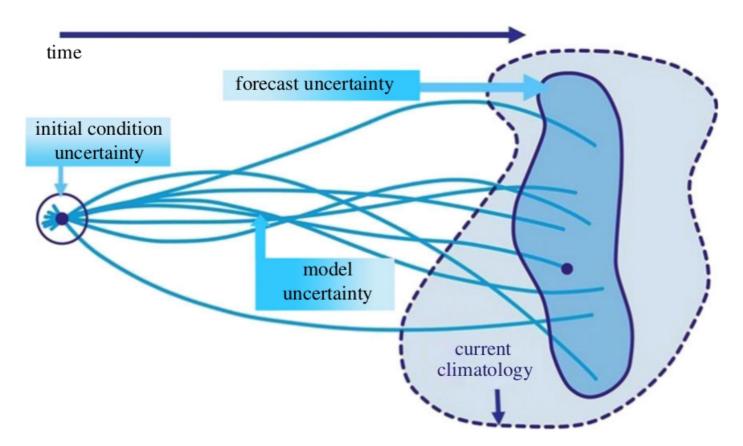


Figure 2 from Slingo and Palmer (2011) : illustration of sources of uncertainty in a probabilistic weather forecast





#### **Introduction – Sources of uncertainty**



 But in seasonal forecasts, there are additional sources of uncertainty

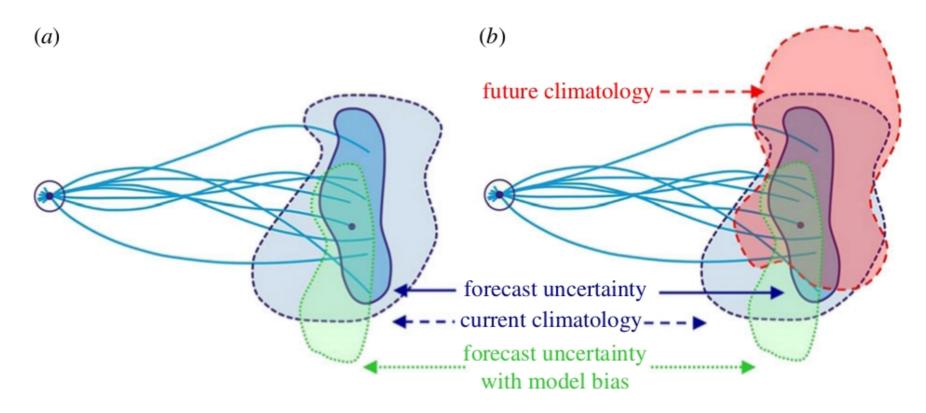


Figure 8 from Slingo and Palmer (2011) : illustration of sources of uncertainty in a probabilistic seasonal forecast with (a) model biases and (b) a changing climate







Goal of this lecture :

- Provide an overview of the different sources of uncertainty in seasonal forecasting
- Discuss some strategies used in state-of-the-art seasonal forecasting systems to deal with these uncertainties







- Dealing with uncertainties in initial conditions
- Dealing with uncertainties in numerical models
  - Multi-model approach
  - Stochastic perturbations
- Dealing with uncertainties in seasonal forecast evaluations
- Communicating uncertainties in seasonal forecasts







#### Dealing with uncertainties in initial conditions

Dealing with uncertainties in numerical models Multi-model approach Stochastic perturbations

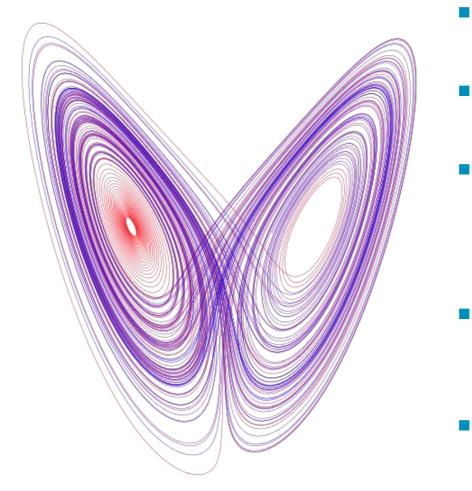
Dealing with uncertainties in seasonal forecast evaluations

Communicating uncertainties in seasonal forecasts



#### **The Lorenz attractor (1963)**





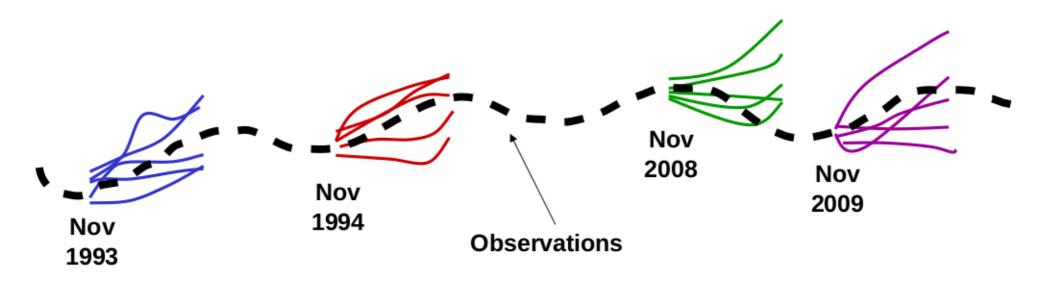
- Lorenz (1963) : Introduction of chaos theory in meteorology
- Very simple model (non-linear equations)
- Small errors in initial conditions could lead to very large uncertainties in the time evolution on the Lorenz attractor
- Depending on the initial phase, the growth of uncertainty (and hence predictability) differs greatly.
- Limits of predictability in a deterministic framework : typically 10-15 days







- Probabilistic weather forecasts : generated with small random perturbations to the atmospheric initial conditions
- Conversely, when dynamical seasonal forecasts were first developed, these were constructed as ensemble forecasts

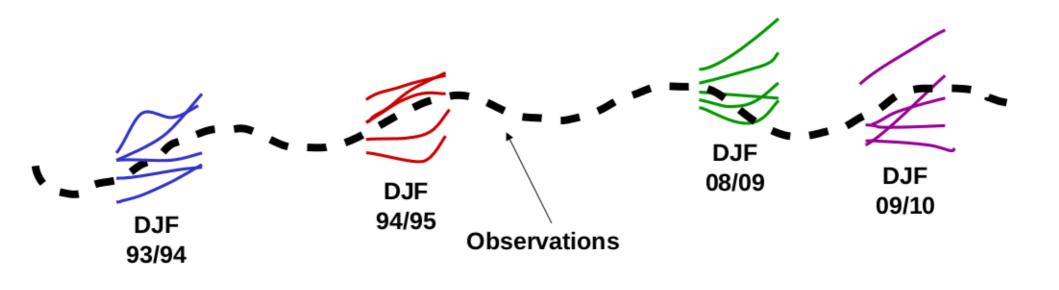








- Probabilistic weather forecasts : generated with small random perturbations to the atmospheric initial conditions
- Conversely, when dynamical seasonal forecasts were first developed, these were constructed as ensemble forecasts

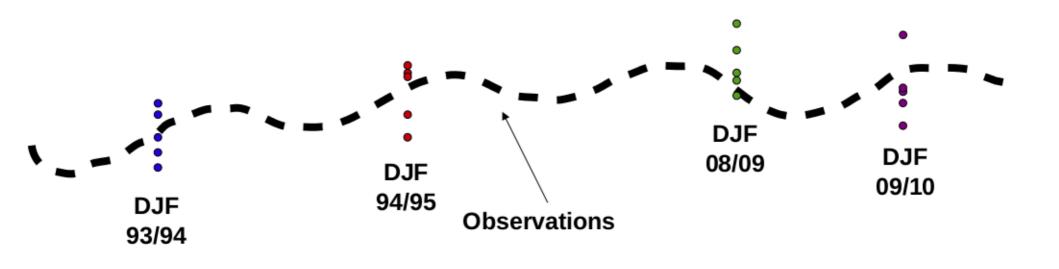








- Probabilistic weather forecasts : generated with small random perturbations to the atmospheric initial conditions
- Conversely, when dynamical seasonal forecasts were first developed, these were constructed as ensemble forecasts









- Global reanalyses for the atmosphere, land, ocean provide initial conditions over a range of past years; corresponding analyses are used for real time initialization
- Ensemble generation techniques for initialization vary depending on the institute, but generally use one of the following:
  - Lagged initialization: (Hoffman and Kalnay, 1983) ensemble members are initialized using different sets of initial conditions separated by 6 hours, one day, one week... or combinations of these for the atmosphere / ocean
  - Initial condition perturbation: (Kalnay, 2003) atmosphere or ocean (re)analysis + small perturbation
  - Ensemble assimilation : similar to the previous method, but members directly derived from the members of an ensemble assimilation technique







- Examples :
  - ECMWF SEAS5: atmosphere and some land fields are perturbed using EDA perturbations from 2015, as well as leading singular vector perturbations; ocean fields are from a 5-member OCEAN5 analysis + SST pentad perturbations (Johnson et al. 2019)
  - CFSv2: lagged initialization with 4 runs per day every five days for the 9-month forecasts, 1 run per day for 1-season forecasts (Saha et al. 2014)
  - Météo-France System 6: lagged initialization with start dates on the 20th, 25th of the previous month, 1 control member on the 1st







Dealing with uncertainties in initial conditions

- **Dealing with uncertainties in numerical models** 
  - **Multi-model approach**
  - **Stochastic perturbations**

Dealing with uncertainties in seasonal forecast evaluations

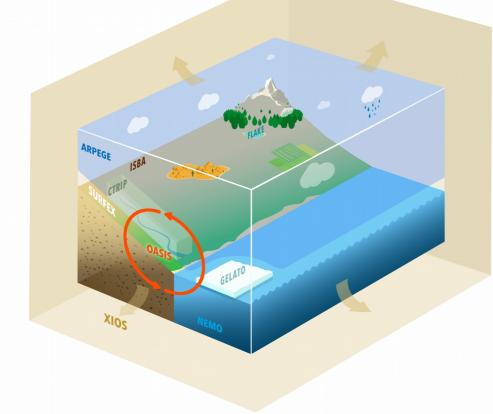
Communicating uncertainties in seasonal forecasts







 Example: CNRM-CM model co-developed by CNRM and CERFACS (Voldoire et al., 2019)



Atmosphere: ARPEGE Climat climate model, typically run at resolutions  $\sim 1.4^{\circ}$  ( $\sim 0.5^{\circ}$  in System 6)

Land surface: SURFEX interface

Ocean: NEMO v3.6 on ORCA1 tripolar grid

Coupler: OASIS MCT

**CNRM-CM** 







Numerical models are implemented on finite grids

 $\rightarrow$  numerical approximations of the equations defining the time evolution of physical fields (e.g. Navier-Stokes equations for ocean and atmosphere) : time stepping, splitting of integration of seperate tendencies...

 $\rightarrow$  sub-grid scale phenomena often need to be parameterized in GCMs (e.g. triggering of convection...)

 $\rightarrow$  example : lower resolution models have a coarser topography and don't represent well the impact of orography on large-scale flow







- Coupling different model components inevitably leads to further sources of model uncertainty
  - Representing fluxes between components
  - Coupling frequency of GCMs is restricted by computational costs
  - Limited availability of reference data (field campaigns)







- These model limitations inevitably lead to model-dependent and flow-dependent errors that are difficult to correct a posteriori in seasonal forecasts
- So how can we deal with these sources of uncertainty? Two strategies discussed here:
  - Multi-model approach: use several models as a means of quantifying errors related to model choices
  - Stochastic methods: introduce perturbations in-run accounting for model error





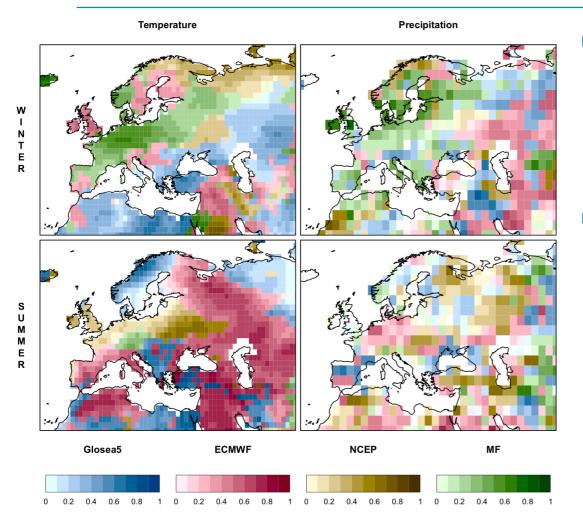


- Seminal papers: Krishnamurti et al. 1999 & 2000, Doblas-Reyes et al. 2000, Hagedorn et al. 2005
- Simple idea: combining ensemble forecasts from different, independant models as a way of estimating the uncertainty resulting from model error
- 3 straightforward ways to construct a multi-model ensemble:
  - Equally weighted members (Hagedorn et al. 2005)
  - Multi-model mean (equally weighted models)
  - Weighted ensemble, with weights depending on model performance for given criteria over the hindcast period



#### **Multi-model mean**





- Assumption: no particular model is more likely to represent the truth than any other in the multimodel
- Works well if levels of performance are similar

Fig. 3 from Mishra et al. 2019 showing at a gridpoint level the system with highest correlation, and correlation value, for EUROSIP hindcasts for DJF and JJA at lead times 2-4 months.





#### Weighted ensemble



- Several methods to determine weights have been applied in past studies:
  - Minimization of Ignorance score (Weigel et al. 2008)
  - Bayesian approaches (e.g. forecast assimilation, Stephenson et al. 2005)
  - Multiple linear regression techniques
  - Using correlation as weights (Mishra et al. 2019)
- Due to very short verification periods, and some co-linearity between the different forecasts, there is a large uncertainty in the weights derived from such techniques.
- To avoid over-fitting of some techniques, cross-validation is necessary, and if possible, separating learning and verification periods.





## Some results (Batté and Déqué 2011, ENSEMBLES project)



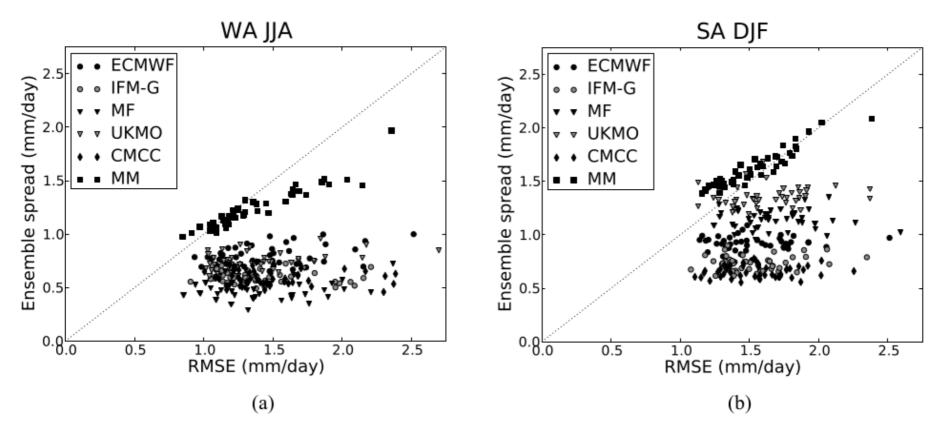


Fig. 6 from Batté and Déqué 2011 showing the RMSE vs ensemble spread of single models and multi-model ensemble (equal weights) for the ENSEMBLES project 1960-2005 seasonal hindcasts for JJA precipitation over West Africa (a) and DJF precipitation over southern Africa (b)





### Some results (Mishra et al. 2019, EUROSIP)



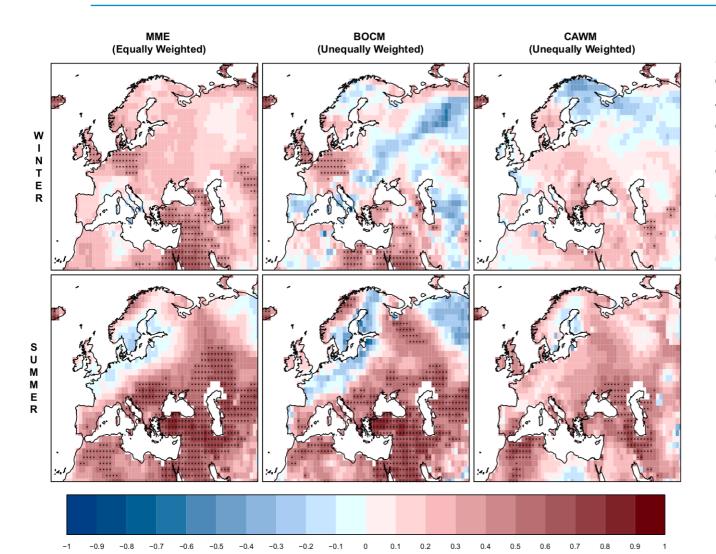
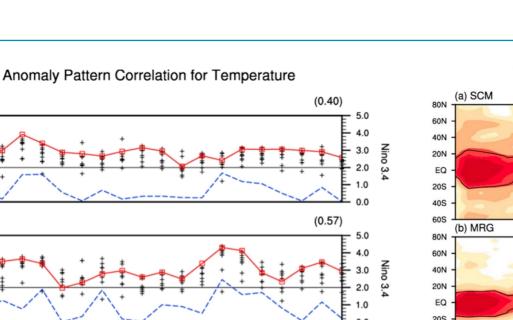


Fig. 10 from Mishra et al. 2019 showing nearsurface temperature anomaly correlation with ERA-Interim in winter and summer EUROSIP multi-model hindcasts (1992-2012), using 3 different multi-model combination methods.





### Some results (Min et al. 2014, APCC)



1999

2001

Nino 3.4

2003

Figs. 4 and 6 from Min et al. (2014) Top: surface temperature pattern correlation vs NCEPv2 for individual models (crosses) and the MME (red squares) for JJA and DJF APCC hindcasts over 1983-2003. The dashed blue line is the absolute value of the Nino 3.4 index. Right: zonal mean time correlation for surface temperature with NCEPv2 for multi-model mean (SCM) and several multi-model weighting techniques.

1993

+ Mode

1995

1997

SCM

(c) DF: MRG-SCM 80N 60N 40N 20N EQ 20S 20S 40S 40S 60S 60S (e) DF: SSE-SCM (d) SSE 80N 80N 60N 60N 40N 40N 20N 20N EQ EQ 20S 20S 40S 40S 60S 60S (g) DF: SPM-SCM (f) SPM 80N 80N 0.6 0.5 0.4 0.3 60N 60N 40N 40N 0.2 20N 20N -0.1 EQ EQ -0.2 -0.3 20S 20S -0.4 -0.5 40S 40S

DJF

605

Page 23

(a) JJA

(b) DJF

0.90

0.60

0.30

0.00

-0.30

-0.60

0.90

0.60

0.30

0.00

-0.30

-0.60

1983

1985

1987

1989

1991

Correlation

Correlation

60S

FMA AMJ JJA ASO OND



Temporal Correlation for Temperature



FMA AMJ JJA ASO OND DJF

0.25 0.2 0.15

0.1

0.05 -0.05 -0.1

-0.15

-0.2 -0.25 -0.3

#### **Stochastic perturbations**



 Assumption: seperation between predictable processes and unresolved scales that are represented by noise (Hasselmann, 1976)

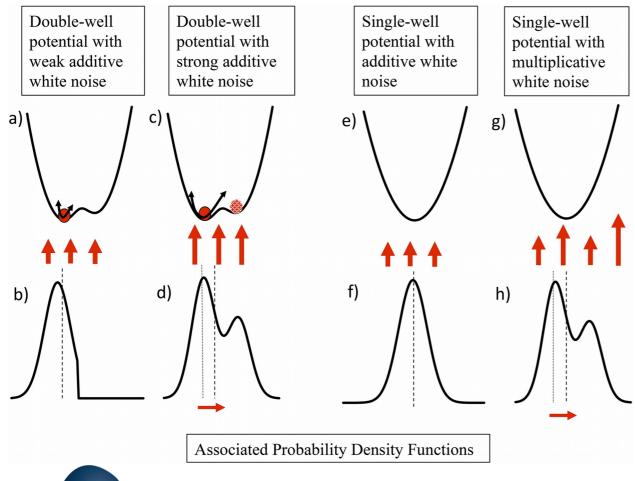


Fig. 1 from Berner et al. (2017) illustrating the effects of additive or multiplicative (statedependent) white noise on simple systems, and associated PDFs obtained.



L. Batté - Uncertainties - CITES 2019 School (Moscow, 31 May 2019)



#### **Stochastic perturbations**



- Review paper on stochastic parameterizations in weather and climate models: Berner et al. (2017)
- Most common approaches in S2D forecasting:
  - Random perturbation (white noise or other)
  - Upscaling/backscatter algorithms
  - Approaches close to random flux corrections
- Not only restricted to the atmosphere (focus in this talk)
  - Sea ice (e.g. Jüricke et al. 2013)
  - Ocean (e.g. Zanna et al. 2018)
  - Land surface (e.g. MacLeod et al. 2016)





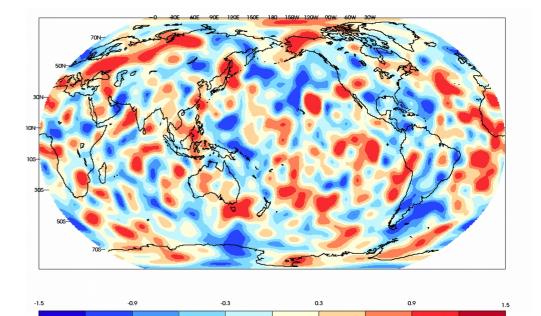
#### **SPPT : Stochastically Perturbed Parameterization Tendencies**



- Introduced by Buizza et al. (1999) into the IFS (ECMWF)
- Empirical method, straightforward to implement
- Time and space correlated multiplicative noise perturbs the net tendencies of the physical parameterizations in the atmospheric model

 $X_{p} = (1+r)X$ ; X = u, v, T, q

Spectral coefficients of *r* are defined by an AR(1) process forced with gaussian random numbers. The same *r* is used for all variables and model levels.



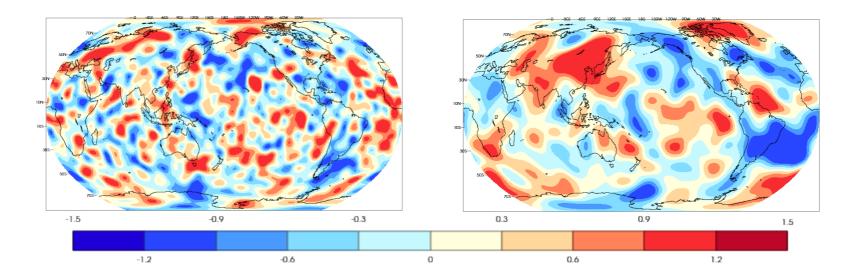




#### SPPT



- Results with EC-Earth  $\rightarrow$  Batté and Doblas-Reyes (2015)
- 2 types of patterns used :
  - − similar combination of time/space scales as ECMWF (System 4)  $\rightarrow$  SPPT3
  - combination of two larger time/space scales to favor monthly and seasonal time scales  $\rightarrow$  SPPT2L



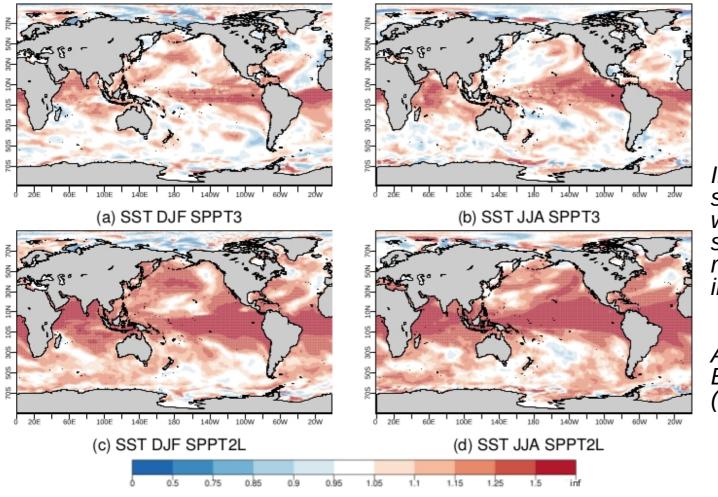




#### SPPT



#### Results with EC-Earth $\rightarrow$ Batté and Doblas-Reyes (2015)



Impact of SPPT on the spread of SST re-forecasts with EC-Earth3 : relative spread with respect to a reference experiment with initial perturbations only.

Adapted from fig. 5 from Batté and Doblas-Reyes (2015)





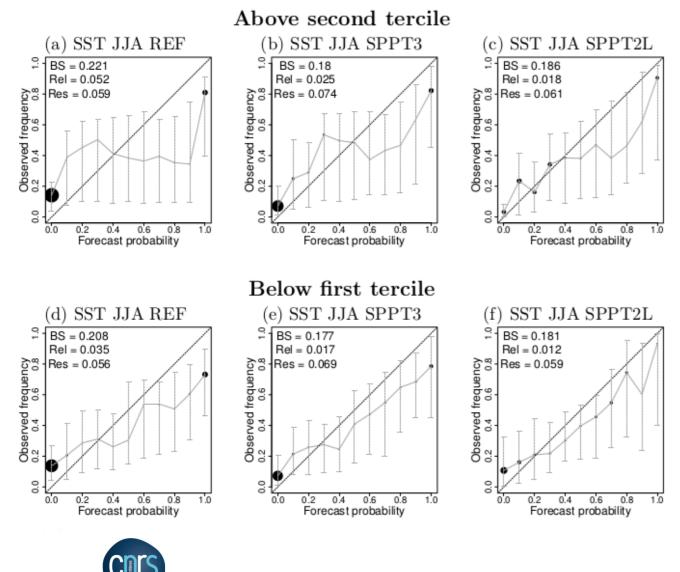
#### SPPT

Page 29



Results with EC-Earth  $\rightarrow$  Batté and Doblas-Reyes (2015)

L. Batté - Uncertainties - CITES 2019 School (Moscow, 31 May 2019)



Impact of SPPT on the Brier score and reliability / resolution components for Nino 3.4 SST re-forecasts with EC-Earth3.

Adapted from figs. 10-11 from Batté and Doblas-Reyes (2015)



#### **Stochastic backscatter scheme (SKEB)**



- References: Shutts (2005), Berner et al. (2009)
- Aim: account for upscale energy transfer from unbalanced flow (convection, gravity waves), as well as turbulence
- Formulation: perturbation of streamfunction
- Introduced in ECMWF seasonal prediction System 4 with SPPT

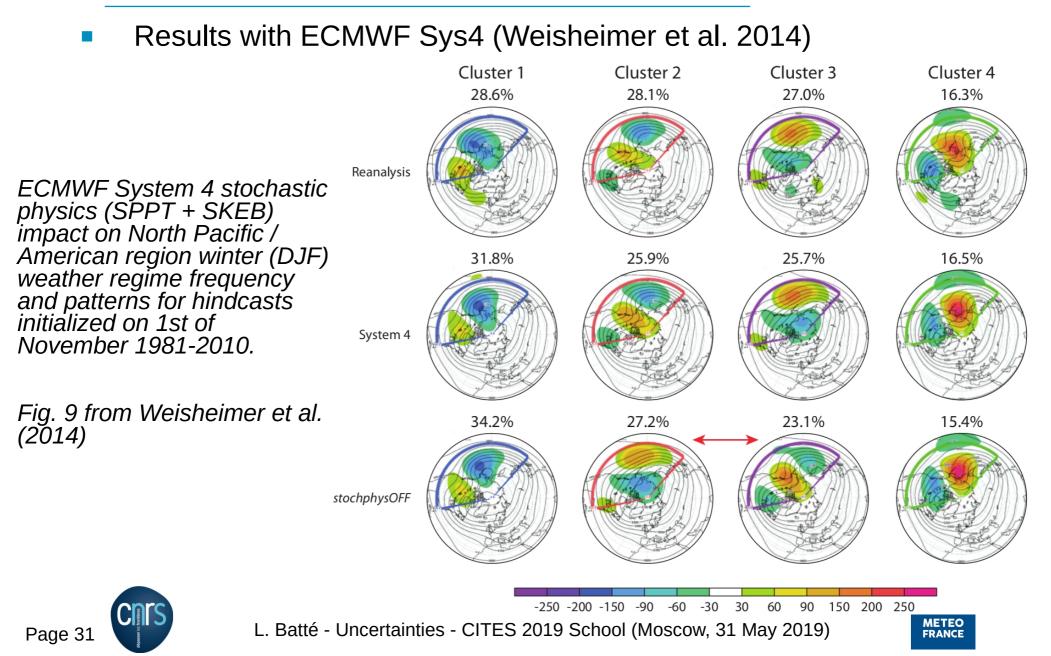
 Similar schemes have been used at NWP scales (ECMWF, UK MetOffice...)





### **Stochastic perturbations in ECMWF forecasts**







- Idea:
  - Use atmospheric relaxation (nudging) as a means of estimating model error in the prognostic variables

$$\frac{\partial X}{\partial t} = M(X) + \frac{X^{\text{ref}} - X}{\tau}$$

- Run relaxed re-forecasts to build a population of model error estimates
- Apply randomly sampled model error corrections back into the model during the seasonal forecast integration

$$\mathbf{X}(t + \Delta t) = \mathbf{X}(t) + \mathbf{M}(\mathbf{X}(t), t) + \delta \mathbf{X}$$

References: Batté and Déqué (2012, 2016)







- Each ensemble member has it's own set of model corrections, thus generating ensemble spread
- The amplitude of the perturbations depend (although not linearly) on the strength of the relaxation in the 1st step run
- Different ways to draw random model corrections among the sample:
  - Series of consecutive days  $\rightarrow$  example: 5 days
  - Using monthly mean corrections
  - Randomly changing corrections every 6 hours / every day...



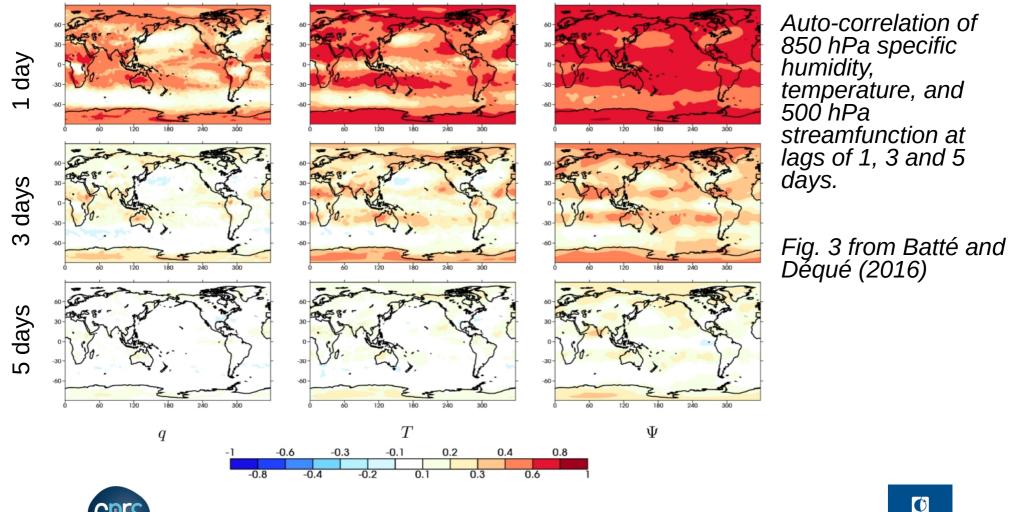




ΜΕΤΕΟ

FRANCE

 Batté and Déqué (2016): Impacts of these perturbations on CNRM-CM (pre-CMIP6 version of ARPEGE-Climate)

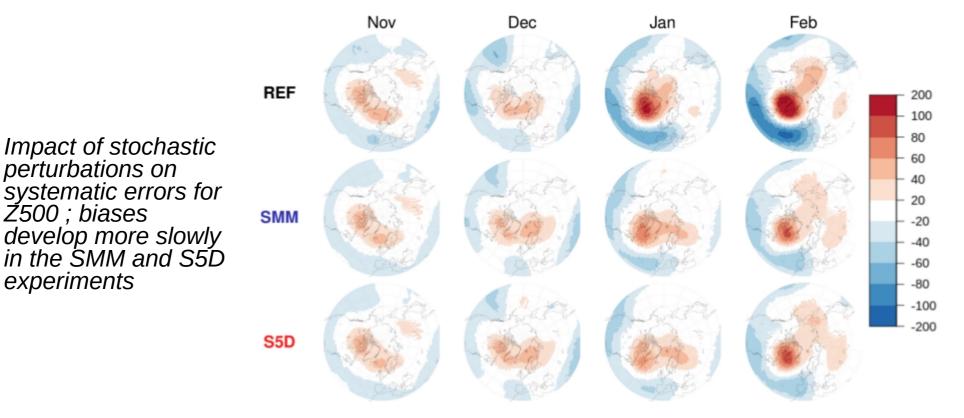




L. Batté - Uncertainties - CITES 2019 School (Moscow, 31 May 2019)



In Batté and Déqué (2016), 3 sets of experiments (NDJF 1979-2012) are compared. REF with initial perturbations only, SMM with monthly mean perturbations, and S5D with perturbations drawn from 5 consecutive days









|                   | NAO+                    |                      | Blocking                |                      | NAO-                    |                      | Atl. Ridge                           |                      | NAO<br>index         |
|-------------------|-------------------------|----------------------|-------------------------|----------------------|-------------------------|----------------------|--------------------------------------|----------------------|----------------------|
| Run               | Freq.                   | Length               | Freq.                   | Length               | Freq.                   | Length               | Freq.                                | Length               | r                    |
| ERA-I             | 32.1%                   | 9.48                 | 24.4%                   | 7.14                 | 18.8%                   | 9.27                 | 16.6%                                | 5.85                 | -                    |
| REF<br>SMM<br>S5D | 26.5%<br>28.0%<br>28.0% | 8.28<br>8.36<br>8.35 | 23.4%<br>23.8%<br>23.8% | 6.56<br>6.78<br>6.97 | 24.0%<br>21.8%<br>21.9% | 8.90<br>9.35<br>9.16 | <mark>16.8%</mark><br>17.1%<br>17.1% | 6.41<br>6.38<br>6.38 | 0.41<br>0.38<br>0.54 |

- As for Weisheimer et al. (2014), improvements are found in weather regime representation with the introduction of these perturbations.
- The NAO correlation is also improved, although differences are not significant.







Dealing with uncertainties in initial conditions

Dealing with uncertainties in numerical models Multi-model approach Stochastic perturbations

**Dealing with uncertainties in seasonal forecast** evaluations

Communicating uncertainties in seasonal forecasts





# Scores, noise, and how to deal with this



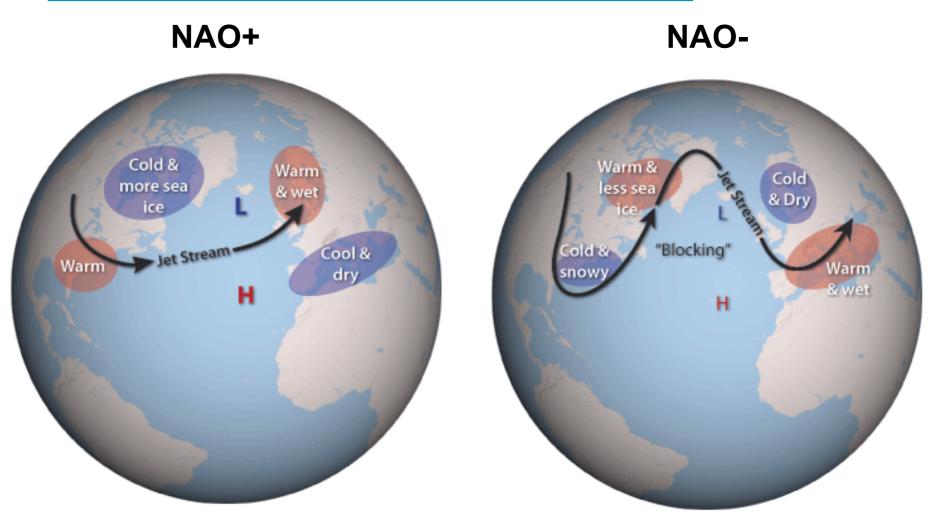
- See A. Munoz and D. Hudson's lectures
- Verification: comparison between re-forecast (past cases) and reference data (observations, reanalyses)
- Limited samples mean that verification metrics are necessarily uncertain
- But a larger number of past cases means going back to periods when reference data was sparse and also more uncertain!
- Some methods can provide some insight into the uncertainty in the skill evaluations of seasonal forecasts:
  - Sub-sampling of ensemble members / years
  - Bootstrap
  - Statistical significance tests  $\rightarrow$  but beware of overinterpretation! (see Wilks, 2016)





# **Illustration: the North Atlantic Oscillation**





Mean impacts observed during positive and negative NAO phases in winter. Source: UK Met Office, adapted from Gardiner and Herring (NOAA)





# **Recent studies show promising skill...**



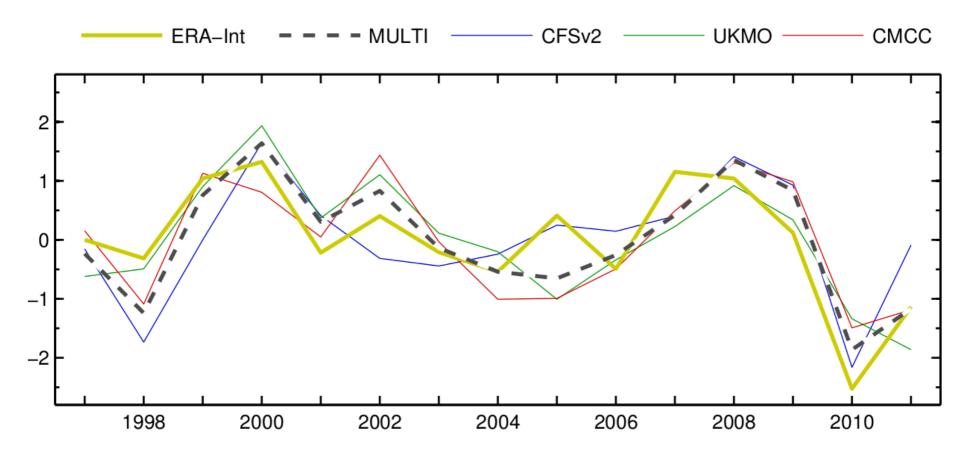


Fig. 1 from Athanasiadis et al. (2017) showing ERA-Interim and re-forecast DJF NAO index (Nov. initializations) computed following Li and Wang (2003). The multi-model correlation is 0.85.



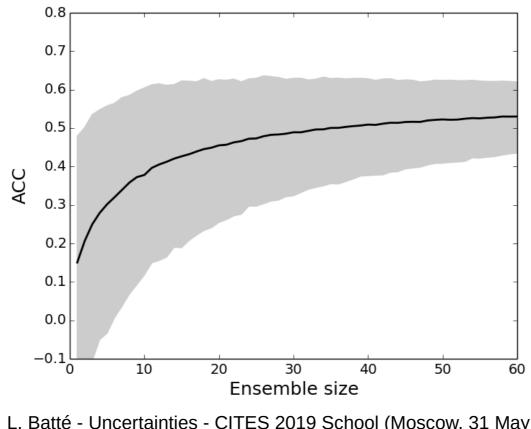


### **Uncertainties in evaluation of NAO predictability**



Û

- Ensemble size and signal-to-noise issues
  - How many ensemble members are necessary to represent the intrinsic variability of the phenomena?
  - What are the confidence intervals around the estimates?

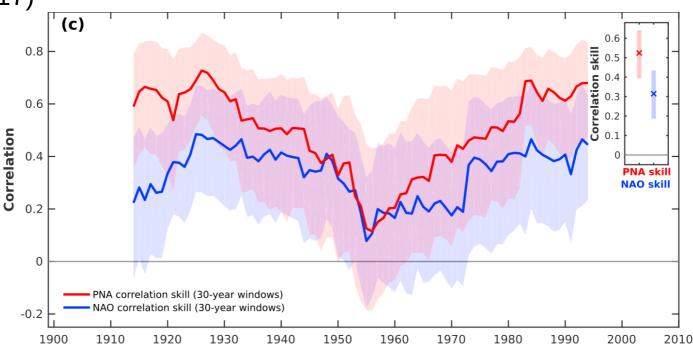




L. Batté - Uncertainties - CITES 2019 School (Moscow, 31 May 2019)

# **Uncertainties in evaluation of NAO predictability**

- Length of the hindcast
  - Under- or over-estimation of NAO predictability in the last decades?
    (Eade et al. 2014, Shi et al. 2015)
  - Role of multi-decadal variability in recent levels of skill? (O'Reilly et al. 2017)



Correlation of NAO and PNA indices with ERA-20C in atmosphere-only winter re-forecasts over 1900-2010 with IFS forced by HadISST (Source : O'Reilly et al. 2017)





#### **Lecture outline**

Dealing with uncertainties in initial conditions

Dealing with uncertainties in numerical models Multi-model approach Stochastic perturbations

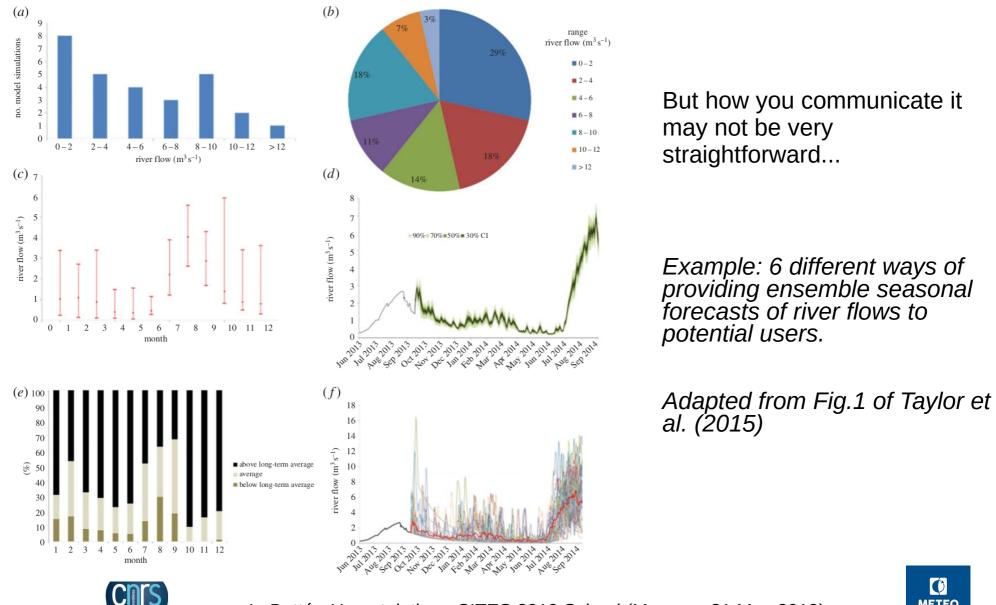
Dealing with uncertainties in seasonal forecast evaluations

#### Communicating uncertainties in seasonal forecasts





# **Communication of uncertainty is key!**





Page 44

# **Conclusion – Dealing with uncertainties**



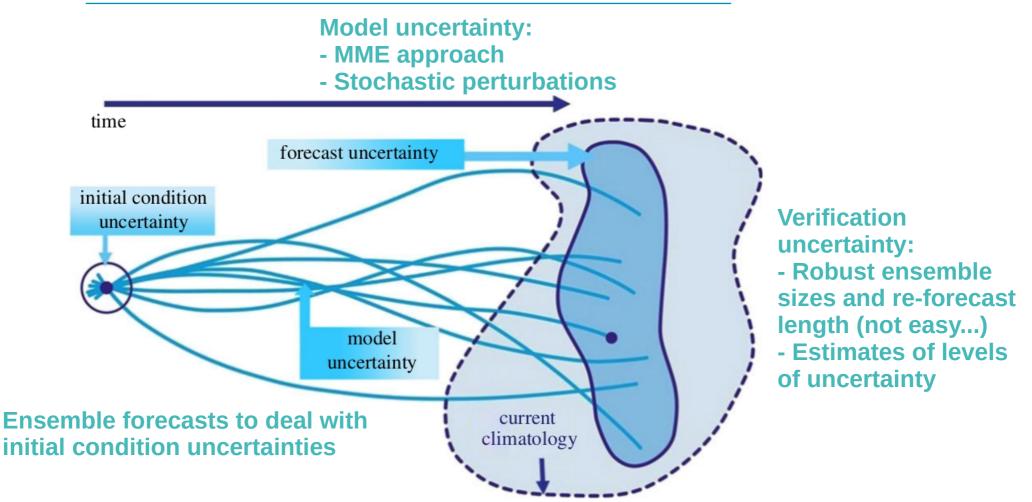


Figure 2 from Slingo and Palmer (2011) : illustration of sources of uncertainty in a probabilistic weather forecast





#### **Thanks a lot for your attention!**







On ensemble forecasting:

- Hoffman and Kalnay (1983) Lagged average forecasting, an alternative to Monte Carlo forecasting. *Tellus*, 35A: 100-118.
- Kalnay (2003) Atmospheric predictability and ensemble forecasting. In *Atmospheric Modelling, Data Assimilation and Predictability*, chapter 6. Cambridge University Press.
- · Lorenz (1963) Deterministic nonperiodic flow. J. Atm. Sc., 20: 130-141.
- Slingo and Palmer (2011) Uncertainty in weather and climate prediction. *Phil. Trans. R. Soc. A* 369: 4751–4767.

On GCMs / seasonal forecasting systems:

- · Johnson, Stockdale, Ferranti et al. (2019) SEAS5 : the new ECMWF seasonal forecast system. *Geosci. Model Dev.*, 12, 1087-1117.
- · Saha et al. (2014) The NCEP Climate Forecast System Version 2, *J. Climate*, 27: 2185-2208.
- Voldoire et al. (2019) Evaluation of CMIP6 DECK experiments with CNRM-CM6-1, *J. Adv. Mod. Earth Sys.*, accepted.





On multi-model ensembles:

- Athanasiadis et al. (2017) A multi-system view of wintertime NAO seasonal predictions. *J. Climate*, 30: 1461-1475.
- Batté and Déqué (2011) Seasonal predictions of precipitation over Africa using coupled oceanatmosphere general circulation models : skill of the ENSEMBLES project multi-model ensemble forecasts. *Tellus*, 63A: 283–299.
- Doblas-Reyes et al. (2000) Multi-model spread and probabilistic seasonal forecasts in PROVOST.
  Q. J. Roy. Meteorol. Soc. 126 (567): 2069-2087.
- Hagedorn et al. (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting – I. Basic concept. *Tellus*, 57A(3): 219-233.
- Krishnamurti et al. (1999) Improved weather and seasonal climate forecasts from multimodel superensembles. *Science*, 285(5433): 1548-1550.
- Krishnamurti et al. (2000) Multimodel ensemble forecasts for weather and seasonal climate. *J. Climate*, 13(23):4196–4216.
- Mishra et al. (2019) Multi-model skill assessment of seasonal temperature and precipitation forecasts over Europe. *Clim. Dyn.*, 52(7-8): 4207-4225.
- Min et al. (2014) Assessment of APCC multimodel ensemble prediction in seasonal climate forecasting: Retrospective (1983–2003) and real-time forecasts (2008–2013), *J. Geophys. Res. Atmos.*, 119: 12,132–12,150.
- Stephenson et al. (2005) Forecast assimilation : a unified framework for the combination of multimodel weather and climate predictions. *Tellus*, 57A(3): 252-264.
- Weigel et al. (2008) Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? *Q. J. Roy. Meteorol. Soc.* 134: 241-260.



Page 48



On stochastic perturbations:

- Batté and Déqué (2012) A stochastic method for improving seasonal predictions, *Geophys. Res. Lett.*, 39: L09707.
- Batté and Déqué (2016) Randomly correcting model errors in the ARPEGE-Climate v6.1 component of CNRM-CM: applications for seasonal forecasts. *Geosci. Model Dev.*, 9: 2055–2076.
- Batté and Doblas-Reyes (2015) Stochastic atmospheric perturbations in the EC-Earth3 global coupled model: impact of SPPT on seasonal forecast quality, *Clim. Dyn.*, 45: 3419–3439.
- Berner et al. (2009) A spectral stochastic kinetic energy backscatter scheme and its impact on flowdependent predictability in the ECMWF Ensemble Prediction System, *J. Atmos. Sci.*, 66: 603–626.
- · Berner et al. (2017) Towards a new view of weather and climate models, B. Am. Meteorol. Soc.,
- Buizza et al. (1999) Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. *Q. J. R. Meteorol. Soc.* 125: 2887–2908.
- Jüricke et al. (2014) Potential sea ice predictability and the role of stochastic sea ice strength perturbations. *Geophys. Res. Lett.*, 41: 8396–8403.
- MacLeod et al. (2016) Improved seasonal prediction of the hot summer of 2003 over Europe through better representation of uncertainty in the land surface. *Quart. J. Roy. Meteor. Soc.*, 142: 79–90.
- Shutts (2005) A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J.
  R. Meteorol. Soc., 131: 3079–3102.
- Weisheimer et al. (2014) Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system. *Phil. Trans. R. Soc.* A, 372: 20130290.
- Zanna et al. (2018) Uncertainty and scale interactions in ocean ensembles: From seasonal forecasts to multidecadal climate predictions. *Q. J. R. Meteorol. Soc., in press.*





On signal-to-noise issues, evaluation and communication of uncertainties:

- Eade et al. (2014) Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? *Geophys. Res. Lett.*, 41: 5620–5628.
- O'Reilly et al. (2017) Variability in seasonal forecast skill of Northern Hemisphere winters over the twentieth century, *Geophys. Res. Lett.*, 44: 5729–5738.
- Shi et al. (2015) Impact of hindcast length on estimates of seasonal climate predictability, *Geophys. Res. Lett.*, 42: 1554–1559.
- Taylor et al. (2015) Communicating uncertainty in seasonal and interannual climate forecasts in Europe. *Phil. Trans. R. Soc. A*, 373: 20140454.
- Wilks (2016) "The stippling shows statistically significant grid points": how research results are routinely overstated and overinterpreted, and what to do about it. *Bull. Amer. Meteor. Soc.*, 97, 2263–2273.



