Impact of snow on subseasonal-toseasonal forecasts

Yvan J. Orsolini NILU - Norwegian Institute for Air Research and University of Bergen , Norway

Collaborators: G. Balsamo, E. Dutra, A. Weisheimer, F. Vitart (ECMWF, UK), Fei LI (NILU, Norway)

Funded by Norwegian Research Council

Snow/Sea Ice interannual variability

- Local effect on surface temperature (direct)
- Coupling to large-scale circulation (indirect)

Source: NASA Satellite

Arctic Oscillation (North Atlantic Oscillation) : key mode of wintertime variability of the Climate System

Impact of autumn Eurasian snow cover on NAO/AO

modulates planetary waves propagating upward into the stratosphere, & the intensity of the polar vortex, with a lagged surface impact at high latitudes (e.g., AO) resulting from downward descent of stratosphere-troposphere interactions
 modulates planetary wave trains propagating horizontally, downstream of Eurasia over the North Pacific

(e.g. Cohen et al., Nature Geos 2007, 2014; Orsolini and Kvamstø, JGR 2009,...)

Observed link between October Eurasian snow

Figure courtesy of SH Kim and J-H Jeong, KOPRI

Non-Stationarity of snow/AO link in climate re-analyses

sliding correlations 21 year DJF NAO YOR SNOW norm

Sliding snow / AO Correlations over 20th Century

Non-stationarity : correlation even reversed in early 20th Century

Peings et al, GRL, 2015

Wegmann, Orsolini et al, in prep.

Eurasian snow /NAO link in climate models

(see Henderson et al., Nature 2018 for review)

Climate models (e.g. CMIP5) do not capture link between OCT snow cover and wintermean AO (caveat : how robust is this link?)

Climate models lack inter-annual autumn snow variability

 \blacktriangleright Overall issue that climate models are under-responsive to surface forcings

 \blacktriangleright Deficient PW interaction with the stratospheric jet

Physical Mechanisms of snow/atmosphere coupling

(see Henderson et al., Nature 2018 for review)

Short-wave albedo feedback : snow-covered land has high albedo

Thermodynamical feedback : heavy snowpack provides insulating layer, decoupling lower atmosphere from soil below

Hydrological feedback : heavy snowpack provides larger melt water in spring, carrying the signal into soil moisture

Implications of snow/AO link for predictability

Forecast or climate models do respond to (strong) imposed snow cover variability (Jeong et al., 2013; Orsolini et al., ClimDyn 2013)

> Actual predictability experiments : coupled ocean-atmosphere forecasts with realistic initialisation (atmosphere, ocean, land incl. snow)

1)

Experiments with the ECMWF seasonal prediction model

Case study of the very cold winter 2009/10 in Europe and USA

Most negative NAO in winter (DJF) in 145-Year Record

2)

Norwegian Climate Prediction Model (NorCPM)

Longer 32-year period (1985-2016)

A first ensemble of S2S forecasts with accurate snow initialisation

Following GLACE approach for soil moisture impact (Koster et al. 2004; 2010)

Following GLACE soil moisture approach (Koster et al. 2004; 2010)

Forecast skill increment in surface temperature : evaluation against re-analyses

Skill measure : r² (correlation coefficient sqr)

Following GLACE approach (Koster et al. 2004; 2010)

"SNOWGLACE" experiments with ECMWF seasonal prediction system (not with operational system S4)

- High horizontal resolution (T255) coupled oceanatmosphere model (IFS HOPE V4)
- State-of-the-art ensemble prediction system atmospheric model: 36R1, 62L, (low) top at 5hPa
- land surface module is HTESSEL improved hydrology
- improved 1-layer snow scheme Dutra (2011)
- <u>High horizontal</u> resolution is same as ERAINT reanalyses

Orsolini, Y.J., Senan, R., Vitart, F., Weisheimer, A., Balsamo, G., Doblas-Reyes F., Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/10, Clim. Dyn., vol47, 3, 1325–1334, (2016)

Series 1 (S1)

- 12-member ensemble
- atmospheric / oceanic / land

initialisation

- forecast length : 2-month
- Start date: DEC 1, 2009
- 2009
- •realistic snow initialisation (ERAINT)

Series 2 (S2)

identical, <u>but</u>

• "low snow" taken from earlier start dates in fall, and other years

Anomaly field : ensemble-mean difference (Series 1 – Series 2) in 15-day averaged sub-periods (day 1-15, day 16-30, ...)

Ens (S1 – S2) is a (high minus low) snow composite difference

Sensitivity to high snow : surface temperature differences

ensemble-mean High snow – Low snow DEC 1, 2009 start date Presence of thick snow pack → colder surface temperature initially (up to 6K) over Eurasia.

Afterwards, quadrupole pattern across ATL, typical of negative NAO → cold Europe and NE America.

+ Cold anomaly over Far East

Sensitivity to high snow : Sea level pressure, wind speed (200 hPa), SST differences

Series 1 minus Series 2 Lead 15 (16-30 day) 95%

ensemble-mean High snow – Low snow 15-day lead (16-30 days)) differences between High snow minus Low Snow initialisation :

→ more negative NAO

As seen in SLP meridional dipole, jet stream displaced further south, SST tripole.

ROLE OF STRATOSPHERE

Forecasts with high snow : enhanced heat flux

- → Stratospheric vortex deceleration:
- → Fast response (1-2 weeks) to stratospheric change over N.ATL. (NAO neg)

Normalised NAO index

(based on anomaly of SLP difference; years 2004-2010)

→ Snow initialisation (high snow) contributes to maintaining negative NAO
→ one of the factors influencing negative NAO phase, not main driver

Implications of snow/AO link for predictability

actual predictability experiments : coupled ocean-atmosphere forecasts with realistic initialisation (atmosphere, ocean, land incl. Snow)

Norwegian Climate Prediction Model (NorCPM)
 Coupled atmosphere-ocean model (NCAR WACCM + MICOM)
 Two-month forecasts over a 32-year period (1985-2016)
 Start date in NOV 1 (NOV, DEC forecasts)

Initialisation

- Land: CLM; the initial and boundary data is taken from an off-line run driven by NCEP reanalysis.
- Ocean & sea ice: NorCPM reanalyses; SST anomaly and temperature and salinity profiles are monthly assimilated into the ocean component.
- Atmosphere: nudging WACCM (for 2-week period) towards the ERA-Interim reanalysis.

Period

 ✓ Ten of 3-month ensemble forecasts, started on every 1st November in the years 1980–2010.

Twin experiments

- ✓ **Series 1**: realistic initialisation of snow variables based on CLM/NCEP.
- Series 2: as in Series 1, but with "scrambled" snow initial conditions from an alternate year.
- i.e., snow perturbations representative of inter-annual variability

Verification datasets

- ✓ ERA-Interim land (snow) [uncorrected version]
- ✓ ERA-Interim (temperature)

Ensemble of retrospective S2S winter forecasts (1985-2016) with Norwegian Climate Prediction Model (NorCPM)

Ensemble of retrospective S2S winter forecasts (1985-2016) with Norwegian Climate Prediction Model (NorCPM) : role of snow initialisation

Composite of high versus low initial snow

Series 2: members with higher (skyblue dots) or lower (blue crosses) SWE than Series 1, based on -0.5 standard deviation.

conditionally sampled Series 2

Composite of high versus low initial snow

Normalized AO index

- The AO is more negative in the forecasts with high initial snow than low snow
- Possibly by the same stratospheric coupling mechanism

7-negative AO-year difference: Series 1 minus conditionally sampled Series 2

Zonally-mean zonal wind (shaded), E-P flux (vectors) and its divergence (contours)

Summary of dedicated model experiments

Heavy snowpack has initial cooling effect on lower atmosphere

Presence of thick snowpack over Eurasia maintains the initial negative NAO

Coupling to the stratosphere

Snow acts a feedback (not the main driver of winter NAO/AO)

Prediction aspects

Snow accurate initialisation improves snow forecast skill

Moderate but "patchy" skill increments in surface temperature in the transition regions at the southern edge of snow-covered land at long lead times.

Cold spots" where snow-atmosphere coupling operate (needs to be verified in multi-model framework)

Analogous results to "Hot spots" with soil moisture-atmosphere coupling, with same limitations

PUBLICATIONS

Orsolini, Y.J., Senan, R., Balsamo, G., Doblas-Reyes, F.J., Vitart, F, Weisheimer, A., Carrasco, A., and Benestad, R.E. Impact of snow initialization on sub-seasonal forecasts, Climate Dynamics, 41:1969-1982, (2013)

Senan, R., Orsolini, Y.J., Weisheimer A., Vitart, F., Balsamo, G., Stockdale, T., Dutra, E., Doblas-Reyes, F., D. Basang, Impact of springtime Himalayan-Tibetan Plateau snowpack on the onset of the Indian summer monsoon in coupled seasonal forecasts, Clim. Dyn., Vol. 47, Issue 9, pp 2709–2725, doi:10.1007/s00382-016-2993-y. (2016)

Orsolini, Y.J., Senan, R., Vitart, F., Weisheimer, A., Balsamo, G., Doblas-Reyes F., Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/10, Clim. Dyn., vol47, 3, 1325–1334, (2016)

F. Li, Y. Orsolini, N. Keenlyside, M.-L. Shen, F. Counillon, Y. Wang, Impact of snow initialisation in subseasonal-toseasonal winter forecasts with the Norwegian Climate Prediction Model, submitted to JGR special issue on Bridging Weather and Climate: Subseasonal-to-Seasonal (S2S) Prediction, submitted April 29, 2019

RESERVE SLIDES

Linking Eurasian snow and Arctic sea ice

□ LOW ARCTIC SEA ICE (late summer/early autumn) → HIGH SNOW (autumn over Eurasia) :

some statistical evidence for link between low sea ice in autumn and winter snowfall (Liu et al, PNAS 2012)

Evidence from Lagrangian studies linking moisture transport from an ice-free Barents-Kara Sea to increased snowfall and snow depth over Southwestern Siberia

(but not continent-wide)

Wegmann, Orsolini, Jaiser, Rinke, Dethloff et al., Arctic moisture source for Eurasian snow cover variations in autumn (Env. Res. Lett. - 2015)

150-hPa Geopotential height 500-hPa vertical wave activity flux

7-negative AO-year difference: Series 1 minus conditionally sampled Series 2 1) Modelled surface temperature is strongly impacted by the presence of snow and high Eurasian snow is related to **enhanced wave activity fluxes**;

2) Realistic snow initialisation favors the maintenance of the negative Arctic
Oscillation though a land surface— stratosphere connection;

3) It leads to skill increments in **surface temperature** in the transition regions at the southern edge of snow-covered land at long lead times.

Snow water equivalent

Norwegian Climate Prediction Model (NorCPM)

3.5. Relation between the stratospheric polar vortex and surface conditions

Example of evolution of SWE in the year 1995

Table. The snow variables scrambled in Series 2

Name	Long-name	Units
SNLSNO	number of snow layers	unitless
SNOWDP	snow depth	m
frac_sno	fraction of ground covered by snow	0 to 1
DZSNO	snow layer thickness	m
ZSNO	snow layer depth	m
ZISNO	snow interface depth	m
H2OSNO	snow water	mm
H2OSOI_LIQ	liquid water (only in the snow layer)	kg/m²
H2OSOI_ICE	ice lens (only in the snow layer)	kg/m²
T_SOISNO	soil-snow temperature	К
snw_rds	snow layer effective radius	um
albsnd_hst	snow albedo (direct)	0 to 1
albsni_hst	snow albedo (diffuse)	0 to 1

Changing high-latitude cryosphere: warm Arctic-cold continents due to Eurasian snow

C Series 1 minus Series 2

T_{2m} difference

Difference : High snow – Low snow 30day lead

(2004-2010)

High Snow anomaly leads to: <u>Warm Arctic-Cold Eurasia</u> <u>pattern</u> (analogous to sea-ice impact)