Long-range weather prediction using coupled model

Fadeev R. Yu., Ushakov K. V., Tolstykh M. A., Ibrayev R. A., Shashkin V. V.

Marchuk institute of numerical mathematics RAS Shirshov's Institute of Oceanlogy RAS Hydrometeorological centre of Russia

e-mail: <u>rost.fadeev@gmail.com</u> 3 June 2019 CITES-2019

The Seamless Weather-Climate Prediction Problem

Slide from June-Yi Lee presentation at CITES-2019 School

Operational long-range models

Таблица 1: Operational coupled models for the seasonal prediction.										
Center	Model	Atmosphere model,	Ocean model,	Ice model,	Other					
		resolution	resolution	resolution	components					
UK	GloSea5	Unified model,	NEMO,	CICE,	OASIS3,					
MetOffice		0.83°x0.85° (50 km),	ORCA025,	0.25°,	JULES					
		85 levels to 85 km.	75 levels	zero-layer						
ECMWF	SEAS5	IFS,	NEMO,	LIM2,	OASIS3					
		Tco399 (25km),	ORCA025,	$0.25^{\circ},$	HTESSEL					
		91 levels	75 levels	3 layers	WAM, SPPT					
Meteo-	SYSTEM5	Arpege Climate,	NEMO,	Gelato,	OASIS3					
France		TL359 (about 0.5°),	ORCA1,	1°,	Surfex					
		91 levels to 0.01 hPa	42 levels	10 layers	TRIP					
NCEP	CFSv2	GFS,	MOM,	SIS,	NOAH					
		T126 (about 100 km),	0.5°,	$0.5^{\circ},$						
		64 levels	40 levels	3 layers						
Canada	CanSIPS	CanAM4,	CamOM4,	Built-in	CLASS					
		T63 $(2.8^{\circ}),$	1.41°x0.94°,	CanAM						
		35 levels up to 1 hPa	40 levels							

From SLAV to SLAV-INMIO-CICE coupled model

SLAV "seamless prediction" version – 2014.
SLAV-INMIO coupled model – 2015.
SLAV-INMIO-CICE 0.5° first run on Sep 2018.

- Simulations up to 10 years.
- 4-month hindcasts (1992-2010).
 SLAV-INMIO-CICE 0.25° first run on Apr 2019.

Coupled SLAV-INMIO-CICE model configuration:

SLAV– combines atmosphere, land and soil models

0.9°x0.72° (400x250), Δt = 1440 s.

96 levels up to 0.03 hPa, Regular lat-lon grid, 1D MPI-decomposition.

10 level multilayer soil model INM RAS.

INMIO – ocean model

0.5°x0.5° (720x360) / 0.25°x0.25° (1440x720) 49 levels,

 $\Delta t = 720 \text{ s.} / 600 \text{ s.}$ (inner step – 30 s.) Tripolar grid 0.5°, 2D MPI-decomposition.

CICE-5.1 – sea ice models

Tripolar grid 0.5°/ 0.25° (same as in INMIO),

5 thickness cat., 1 snow category.

CMF – own developed coupler

See (Kalmykov, et al., GMD, 2018) for details.

Tolstykh et al, GMD, 2017; Ibrayev et al, Izv AOP, 2012; Fadeev et al, RJNAMM, 2016, 2018

Optimal parallel configurations: SLAV 0.9°x0.72° - 500 cores, INMIO **0.5**° – 128 cores, CICE **0.5° –** 32 cores, 661 cores total, 9.4 years/day.

SLAV 0.9°x0.72° - 250 cores, INMIO **0.25**° – 640 cores, CICE **0.25°** – 160 cores, 1051 cores total, 4.2 years/day at CrayXC40. Coupled model scaling *Red*: *SLAV 0.9°x0.72°*, *INMIO & CICE – 0.5° Blue*: *SLAV 0.9°x0.72°*, *INMIO & CICE – 0.25°*

Verification of SLAV model climate: why?

Image: IPCC Fifth Assessment Report (AR5). Climate Change 2013: The Physical Science Basis // http://www.ipcc.ch/report/ar5/wg1.

Evaluation of SLAV model climate Prescribed ocean and sea ice evolution. Annual mean surface fluxes: SR 159.3, TR -56.2, SH -17., LH -86.4 Wt/m² Total surface flux -0.3 Wt/m² (land: +0.028 Wt/m²)

Evaluation of SLAV model climate: wind

Winter (DJF) zonal U-wind (1991-2010)

U-wind at equator (1992-2010)

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

Evaluation of SLAV model climate: precipitations

SLAV-INMIO-CICE: integration up to 10 years SR 163.8, TR -58.6, SH -15.8, LH -88.3 Wt/m² Total surface flux +1.1 Wt/m² (land: +0.031 Wt/m²) Annual mean cloud cover Global annual mean SST (K°) 45°N 288 ~/rrdrio/media/data/gp2_data_aoi/aoi05b_int_pts_1991010100.dat'u 4:14 0° 287.8 45°S 287.6 287.4 90°S 0.3° / 9 years 287.2 0° 90°E 180° 90°W 0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 90°N 287 Annual mean precipitation 286.8 45°N 286.6 286.4 0° 0 500 1000 1500 2000 2500 3000 350(Model days 45°S 90°S 0° 90°E 180° 90°W 5 6 8 9 10 0

4-month hindcasts analysis

		H200			H500		T850			
		RMS	BIAS	Correlation	RMS	BIAS	CORR	RMS	BIAS	CORR
			-	2.5.	-		5			
	SLAV-INMIO- CICE, 1991-2010	81.41	41.44	99.42	48.02	27.26	99.13	2.13	1.10	99.00
		00.01	7 0.00	00.05		20.05		2.20	1.00	
1	SLAV-INMIO- CICE, 1992	88.01	50.08	99.27	51.67	30.05	98.98	2.28	1.23	98.90
	SLAV, 1992	94.10	57.68	99.35	49.26	28.48	99.20	1.78	1.05	99.37
	SLAV-INMIO- CICE, 1995	89.14	54.28	99.35	51.24	30.44	99.12	2.37	1.26	98.82
	SLAV, 1995	107.43	73.13	99.40	53.73	32.57	99.28	2.08	1.21	99.13

Initialization (for experimental runs) SLAV: operational analysis (3D-var) the state of deep soil is pre-calculated within 10-years run. **INMIO+CICE:** 30-60 years CORE2 forcing 2-years of ERA-Interim forcing **Ensemble generation** Perturbation of deep convection intensity parameter. (stochastic physics in plans)

Ways forward

- Tuning and evaluation of the SLAV and SLAV-INMIO-CICE coupled model.
- Upgrading initialization technology & ensemble generation.

Problem

• Evolution of coupled model components.

4-month hindcasts analysis

Thank you for attention!

Rostislav Fadeev Rost.Fadeev@gmail.com

Ocean-atmosphere interaction

The experiments indicate **that short-lived heating produces responses** in midlatitudes at locations **far removed from the source** and these responses persist much longer than the pulses themselves.

Image:

Meridional wind at 300hPa response on 2-day temperature pulse (5°).

Branstator, J. Climate, 2014; Sardeshmukh, Hoskins, JAS, 1988.