

Numerical simulation of the Arctic methanehydrates influence on the climate variability and gas composition of the atmosphere

Chemistry Climate Model (CCM)

Maria Cherepova, Sergei Smyshlyaev

Boundary Conditions	
	<i>[IPCC, 2007]</i>
Methane sources	
Natural sources	145–260 T g/a
• Wetlands	100-231
 Termites 	20-29
• Oceans	4–15
 Hydrates 	4–5
Geological sources	4–14
 Wild animals 	15
• Wildfires	2–5
Anthropogenic sources	264–428 Tg/a
 Energy & industry (fossil fuels) 	74–106
 Landfills & waste 	35-69
Ruminants	76–92
Dies agrieulture	21 112

Rice agriculture 31–112
 Biomass burning 14–88
Total sources 503–610 Tg/a

Methane hydrates reserves is 540 Pg (10⁵ Tg) in Arctic (Russian)/Shakhova et al.,2010/

INM-RSHU CCM

- ✤Spatial resolution 4°×5°
- *39 σ -levels, from surface to 0.1 hPa
- ✤74 gases
- ✤ aerosols, polar stratospheric clouds
- denitrification
- ✤ 174 of chemistry reactions
- 51 of photochemical dissociation processes
 Surface emissions (EDGAR, GISS NASA, GEIA, GEIA):
 - biogenic
 - antropogenic
- scenarios modern methane emissions from gas hydrates

Methane emissions [GISS NASA]

Conclusions and discussions

- We analyzed numerical modeling results with increased methane hydrates emissions(5,10, 20 times).
- Increase methane hydrates emissions results in increase concentrations CH₄
- We estimated influence of methane on OH content (there are positive feedback).
- We estimated O₃ in the lower layer of the atmosphere.
- We got temperature fields and compare fields for each of the increased emissions scenario.
- Methane hydrates emissions will increase with climate change.

Percent change in response to 5 times increased Arctic methane emissions

