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Introduction 

•The task of data assimilation is usually understood as the time-sequential 

estimation of an unknown quantity from observational data. 

 

• The purpose of data assimilation - both the preparation of initial fields for 

subsequent forecasting and the more general one - the description of the 

behavior of the studied fields over time, the study of climate, the estimation 

of parameters, etc. 

 



Bayesian approach to the data assimilation problem 

The time change of the estimated quantity: 
1

1, ( )k k k
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ε - random errors of forecast and observations 

The Bayesian approach consists of applying the Bayes theorem to obtain an 

optimal estimate from observational data and a forecast: 
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Bayesian approach to the data assimilation problem 

There are various options for assessing the state of data and forecast: 

,1( | ),l kp k lx y  - forecast, 

,1( | )k kp x y  - filtration, 

,0 ,1( | )k kp x y  - smoothing,  

where ,0 1 0{ , , , }k k kx x x x , ,1 1{ , , }k ky y y .  



Bayesian approach to the data assimilation problem: 

the ensemble Kalman filter 

Consider a nonlinear dynamic system 1 1( )t t t

k k kf   x x η

An observation equation ( )t t

k k kh y x ε

t

kε 1

t
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The ensemble Kalman filter consists of an ensemble of forecasts  
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Bayesian approach to the data assimilation problem: 

the ensemble Kalman filter 

kK is a matrix of the form 
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Bayesian approach to the data assimilation problem 

1. Given a large sample of realizations for each of the prior pdfs, the 

joint pdfs can be evaluated by integration of each individual 

realization forward in time using stochastic model equation.  

2. The prior pdfs do not need to be Gaussian distributed. 

3. The analysis step of EnKF consists of the updates performed on 

each of the model state ensemble members. 

4. For the case with a linear dynamical model a Gaussian prior pdfs  

the variance minimizing analysis equals the maximum likelihood 

estimate. 

5. For a nonlinear dynamical model the pdfs for the model evolution 

will become non-Gaussian. In this case analysis will provide only 

an approximate solution. 

 



Approaches to the implementation of ensemble Kalman filter 

Ensemble of forecasts 
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Ensemble spread 
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Practical implementation of ensemble algorithms 

1. Algorithms  with the transformation of forecast ensembles. 

2. Local algorithms. 

3. Methods to increase ensemble spread. 

 



Local Ensemble Transform Kalman Filter- LETKF 

(Hunt et al, 2007) 
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Ensemble π-algorithm 

The ensemble π-algorithm is a stochastic filter in which the analysis step is performed 

only for the ensemble mean. 

The ensemble of analysis errors D is a matrix the columns of which are vectors 

{ , 1, , }n
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is a matrix with columns  n

kε - the ensemble of observation errors 
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Classical particle filter 

 

Ensemble ( )lx  of states representing the prior probability distribution b

kp  

at time kt . 

The analysis step at time kt : calculation of new weights  
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Gaussian particle filter 

 

The Gaussian particle filter treats each particle as a Gaussian probability 

distribution 

( , )

1 1

1

( | ) ( , )
L

b l

k k k

l

p x Y N x B 



  

( , )

1

( | ) ( , )
L

a l

k k k

l

p x Y N x B


  

The analysis ensembles ( , )a lx  are calculated by treating each particle as 

an individual Gaussian distribution: 
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Nonlinear ensemble filter 

(T.Bengtsson, C.Snyder, D.Nychka J. of Geoph. Res. V. 108 No 

D24 2003) 
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The behavior of ensemble spread in  

the ensemble Kalman filter (stochastic filter) 

 

The stochastic ensemble Kalman filter can be written in the following form: 

1 1( ) ( ) ( )n n n n n

k k k k k k k kf  
      x I K H x η K y ε

The optimal estimate in the ensemble Kalman filter is the ensemble mean value  n

kx

Deviation from the mean (spread) simulates the estimate error  
n n n
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A ‘theoretical’ estimation error (skill) t t n
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The behavior of ensemble spread in the ensemble Kalman 

filter (deterministic filter) 

 
The deterministic ensemble Kalman filter (analysis step) consists of the equation for 

the mean 

  
, , ,( ( ))a n f n n f n

k k k k kh  x x K y x

and an estimate of the ensemble of analysis errors such that the corresponding 

covariance matrix satisfies the Kalman filter equation  
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The transformation of an ensemble of forecast errors into analysis errors in a 

deterministic filter can be represented in the form of left multiplication  
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The ensemble of analyses of the deterministic filter:  
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The equation for ensemble spread in the ensemble Kalman 

filter (stochastic filter) 

 
The equation for ensemble spread in the stochastic Kalman filter  

1 1( )( )n n n n

k k k k k k k k    dx I K H F dx η K ε

Instead of the nonlinear model operator f we take the linearized operator  
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The estimation error 

The estimation error (the deviation of the mean from the ‘true’ value)  

1 1( )( )t t t t

k k k k k k k k    dx I K H F dx η K ε

The simulated estimation error tends to the theoretical error if the random vectors 

of observational errors and model noise being simulated have the same covariance 

matrices as the true ones.  



The behavior of ensemble spread in the ensemble Kalman 

filter (deterministic filter) 

 

Writing the formula for the analysis perturbations in terms of ‘left multiplication’, 

we obtain the following equation for ensemble spread in the deterministic Kalman 

filter: 

1 1( )n n n
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The formula for the deterministic filter lacks the term with  
n

i iK ε

which simulates ensemble spread as a function of observational data distribution  and 

observational error covariances. 



Equation for estimation error (particle filter) 
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Given N independent samples                  from a density p , an estimator of  p  

can be obtained as a mixture of N Gaussian densities. 

In that case 

1, , Nx x



Methods of improving convergence in the  

ensemble Kalman filter 

Some of the most frequently used methods of improving convergence of the 

ensemble Kalman filter are multiplicative inflation and additive inflation. 

Let us consider the ensemble spread modification in general form. In the 

case of analysis step it has the form 

n
n n

k k k k dx dx β
n

kβ is a random vector with a specified covariance matrix 

in the case of forecast step, the form 

1 1( )( )
n

n n n n
k k k k k k k k k k k      dx I K H F dx η β K ε



Methods of improving convergence in the  

ensemble Kalman filter 

In the case of analysis step the formula for a stochastic filter  

0 1 1
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jK is calculated using the modified covariance matrices 



Methods of improving convergence in the  

ensemble Kalman filter 

For a deterministic filter in the case of analysis step 
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in the case of forecast step 

det 0 det 1 det

1 1

( ,0) ( , ) ( , )
k k

n
n n n

k i i i i i

i i

k k i k i 

 

   dx Ψ dx Ψ A η Ψ A β

det

1

( , )
k

j j j

j i

k i 
 

Ψ A F

The equation for the error when modifying the ensemble spread:  
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Methods of improving convergence in the  

ensemble Kalman filter 

1. The perturbation ensembles of deterministic and stochastic filters with the 

thus modified ensemble spread do not correspond to the error ensemble. 

2.  For            we obtain a version of multiplicative inflation.  

3. For           we obtain a version of additive inflation. In this case, additive 

inflation can be specified so that the covariance matrix coincides with the 

matrix obtained when using multiplicative inflation:  
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Numerical experiments. 

Lorenz-96 model 

The equations of the model  

1 2 1 0

1 1 1 1

d
( ) , 1, ,

dt

, x ,

j

j j j j

J J

x
x x x x F j J

x x x

  

  

    

 

1, , Jx x (J=40) are the variables being forecasted; 

a fourth-order finite-difference Runge-Kutta scheme; 

0.05Δt  corresponds to 6 hours (t=1 is taken for five days); 

0F =8. 

To simulate ‘true values’ in the numerical data assimilation experiments,  0 0

t

0 N(F /4;F /2)x

and         =1000  time steps are made. 
tN

Initial data for forecasting:  d t(0) 0) , 0( N(0,s ) x x δ δ



Numerical experiments 

The following parameters are specified for the numerical experiments:  

an ensemble of initial fields:  d(0) (0) ,n n n

0N(0,s ),n=1, ,N x x δ δ

observations: t (0) ( )0 0 0 0, N 0,ε y x δ δ

an ensemble of observations  

with perturbations:  
0 ( )n n n

0 0 0 0, N 0,ε ,n=1, ,N y y δ δ

model noise: 0n η

in simulating the ‘truth’: 0.01t η

The observations are available at each of the  J=40 model grid points.  

The experimental period has a length  3000 time steps, with assimilation  

being done at each time step or at every four time steps.  

0 10s =ε 

N=20 2

0R I

in all experiments: 



Numerical experiments 

The numerical experiments are performed for ten versions of the ‘truth’, and all 

estimates were calculated as average values over these ten versions. 

The following estimates were considered: 

1
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rms x x
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- the root-mean-square error averaged over K=10 

versions of calculations (k is the number of a 

version and i is the number of a grid node)  
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sp x x
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  - the mean value of the covariance matrix trace 

calculated over K=10 versions of calculations 

(n is the number  of an ensemble member).  



Numerical experiments 

Two series of experiments were performed. 

In the first series, observational data were simulated at one time step intervals, 

and in the second series, at four time step intervals.  

The following experiments were performed in each of the series: 

Experiment 1. In this experiment, multiplicative inflation        was used. 

     =1.1  in the first series   and        =1.2 in the second series). 

 

 

Experiment 2. In this experiment, additive inflation was used so that the 

change in the covariance matrix coincided with the change made in 

experiment 1.  


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Numerical experiments 
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Numerical experiments 
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Numerical experiments 
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Conclusion 

 In the ensemble approach, at the analysis step it is important to specify 

the ensembles corresponding to the density of the analysis error 

distribution. It is necessary to take into account the ensemble of errors of 

observation. 

 To regulate the convergence of ensemble algorithms, it is preferable to 

use additive inflation. 

 The results of the investigations show that ensemble spread in stochastic 

filters rather than in deterministic filters is closer to the theoretical 

estimation error. 

 Multiplicative inflation and additive inflation change the general formula 

for ensemble spread.  

 The formula for ensemble spread in a stochastic filter with additive 

inflation rather than with multiplicative inflation is closer to that for the 

estimation error. 

 
 



 


