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Outline

Introduction: what are analysisng?

Machine learning methods to (a) analyse and (b) predict
the model uncertainty

Suggested approach: “escalation” of uncertainty
Examples
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Example for a quick start: deterministic
forecasts and 90% uncertainty bounds
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Sources of model uncertainty: perceptual,
structure, parameters, data
y:M(Xap)+gs+80+gx+8y
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Traditional steps in uncertainty analysis
of a calibrated model

= Identification of sources of uncertainty (input, parameter,
model structure)

= Quantification of uncertainty (e.g. as distribution)

n Studying propagation of uncertainty through the model
(e.g. by Monte Carlo simulation)

= Quantification of uncertainty in the model outputs (i.e.
identification of output distribution (pdf) or its
characteristics — mean, st.dev., quantiles)

= If possible, reduction of uncertainty (e.g. model
improvement, more accurate measurements, etc.)

= Application of the uncertain information in decision
making process
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Data uncertainty (input, parameters):
propagation of uncertainty through the

model
= y» =M(X, p)
= X = input, p = parameters
= Uncertainty in X and p propagates to output y
= pdf of parameters - pdf of output pdf, > pdf,
= pdf of inputs pdf, - pdf of output pdf, - pdf,
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Monte Carlo Simulation



Mote Carlo casino: roulette wheel
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uniform distribution with the range of [0
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Single model run (no uncertainty)
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Monte Carlo simulation in analysing
parametric uncertainty

Generate random samples
for each parameter
distribution
>

l

Run the model, and generate
Inout data a model output for the given
X
Model M(x,6) set of parameter
\L \L I \L
N Z\Z
yi. ¥ Vs CStore the model outputs)

No

Convergence criterion
satisfied or total number of
imulations reached

\L Yes

Analyse distribution of model
outputs
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Sampling parameters and multiple model runs

————————— " Sample one
Do this muliple times — parameter vector
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Sampling rainfall and multiple model runs
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Representing uncertainty of model
output by the confidence bounds
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Instead of fitting a theoretical distribution, we can use mean,
standard deviation, quantiles.

E.g., 5% and 95% form the 90% confidence bounds
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Propagation of parameters/data uncertainty
by Monte Carlo simulation
IS a typical practical approach.

But is it the only one?
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QUESTION 1.
On assumptions

= We are assuming some known distributions of parameters
or inputs. How safe is this?

= Could we take a safer route and assume less?

= Let's make a step backwards and pose the

QUESTION 1:

what is the uncertainty of the calibrated model itself?
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Residual uncertainty: uncertainty of a
calibrated ("optimal”) model

>

Output Y Model

- Measured
Actual

Model output y~
Model error

.................................................. Measured Value y

.................................................. Actual Value y*
(unknown)

time

= Uncertainty of an optimal model M (x, 6)
= Model M is calibrated on measured data y
= We say the model M uncertainty is manifested in the residual
model error € =y —vy

= This error incorporates all uncertainties due to:
observational errors, inaccurately estimated parameters,
inadequate model structure
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ESCALATION ("build up”) of model
uncertainty [message 1]

1. Study the (residual) uncertainty of an optimal mode/
M (p*)

2. Add and study (typically, by MC simulation)
= A) uncertainty of M (p*) due to DATA uncertainty
= B) uncertainty of M (p) due to PARAMETERS uncertainty

3. Add and study uncertainty of M (p) due to
STRUCTURAL uncertainty

4. Study uncertainty of a mode/ class M (p), given the
probabilistic properties of parameters and data

D.P. Solomatine. Escalation of uncertainty.
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QUESTION 2.
On what is analysed
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= In UA we always use the past data, so
Estimates of uncertainty are about the PAST.

= QUESTION 2:

how can we assess the model uncertainty for new inputs,
l.e. for the future?

- and this question we pose for all sources of uncertainty (and not
only residual )
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Models of Residual Uncertainty :
Using Methods of
Computational Intelligence
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CI in building models of natural processes -
why not build a model of uncertainty?

Actual (observed)
X Natural output Y
Input data | > process >
Measured data Attributas Error (p) 9 min
Irpuis OuipLit
Instancas g e %
AT AR Data-driven
I —» model .
Instance K e L 20 X 7%
M X .
(P, x) Predicted output Y’

= (I provides methods to build Data-driven models

= Ideally, such models are “ultimate models” since they are not
polluted by theories
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Example of a data-driven (statistical, CI)

model
Linear regression model
_ Y=3a,ta X
= observed data characterises the by
input-output relationship el 7 (e.c.. flow)
X>Y e o] blu -
; green

= model parameters are found by
optimization model

- predicts new

= the model then predicts output  outputvalue
for the new input without actual
knowledge of what drives Y

red

new input =TT <
o (e.g. rainfall)

green, red or blue?

D.P. Solomatine. Escalation of uncertainty. 22



CI models: are they indeed intelligent?

Artificial neural network

Regions of the Human Brain InpLt Hidden Lawer Output
Layer Layer

Input #1 —
Input #2 —
= COutput
Input #3 —=
Input #4 —
Front o Back
__out hid (1) \\2 /
Y=g (b0k+zbjk g (a0j+zaijxi ) where g(u)=1+ —
J i e
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Data-driven model as an error corrector
for a process (physically-based) model

' Observed output
)

PHYSICAL SYSTEM -~ N\
0

l i )
A Model v | Model |
. Input data | - ‘
.  parameters A . errors
PROCESS - R Improved
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T model EM ﬂ Forecasted
to forecast | ©for
ERROR of
model M
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Data-driven model to predict the residual
error distribution
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Some of the models of residual
uncertainty

= QR (1978) (quantile regression): autoregressive linear
model of model residuals predicts the distribution quantiles
[Koenker & Basset]

= DUMBRAE (2012) (Dynamic Uncertainty Model By
Regression on Absolute Error) [Pianosi & Raso]:
autoregressive model of model residuals (it corrects the
model residual first and then carries out the uncertainty
prediction by an autoregressive model)

= UNNEC (2006, 2009) (UNcertainty Estimation based on
local Errors and Clustering) [Shrestha & Solomatine]: it
takes into account all variables influencing such uncertainty
and uses machine learning (non-linear) methods (neural
networks, model trees, instance-based learning etc.)
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UNEEC method

UNcertainty Estimation based on local Errors and Clustering

= machine learning model of the past residual errors of the
optimal process modelis built

D.P. Solomatine, D.L. Shrestha (2009). A novel method to estimate model uncertainty
using machine learning techniques. Water Resources Res. 45, WO0B11.

D.P. Solomatine. Escalation of uncertainty.
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UNEEC: assumptions, constraints

= Assumptions
= Model error is an indicator of the model uncertainty

= Model error depends on the current condition of a natural system
and can be predicted

= Model errors are similar for similar conditions
m Constraints
= Model structure and parameters are fixed

= Need to re-train the error model with the changes in the
catchment characteristics (e.g. land use change)

= Data hungry, more data are needed for reliable results

D.P. Solomatine. Escalation of uncertainty.
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Idea 1: assess CDF from all historical
data about errors

Error distribution ﬂ
[ past records

(examples)

T T T T T
265 -1.56  -1. 058 112 (113 185 201 269 e
LO} erval Upper interval

Prediction interval
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Idea 2: local modelling of errors (link
CDF to “"characteristis variables”)

L Error (Q-Q,)
A
Error distribution in cluster Outputﬂ
fj past records
(examples in the

space of inputs)
Flow Q,,

/ DPETIEWZ
—|  Prediction interval
(different for each cluster)
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Idea 3: Use fuzzy clustering of examples to
generate training data sets

Nelus Eager learning
Pl e = Zzlﬂczus,exampze PIC, (ANN or M5 model tree)
— _ Error limits
Kot oxampie is the Output’ for prediction
membership grade of intervals) [ past records
the example to cluster (examples in the

space of inputs)

A—f D—»Flow Q.
e i @Bﬂ U 888 DDD Train regression (ANN)

clus

o [ i models:
V] °, PI=1, (X)
: Q'oOQ’\ PIY = f, (X)
)
. \ .
Rainfall R, e .. New record. The trained f

L and /'Y models will
estimate the prediction
interval
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Using instance-based learning

Nelus Instance based
Plel;cample = Zluclus,example PICcSus learning

clus=1

_ Error limits

is the Outputﬂ for prediction i past records
intervals) (examples in the
space of inputs)

:uclus,, example

membership grade of
the example to cluster

clus Flow Q

g..0] ﬂ 9888 Dﬂ_' \

6 ew
o [ II [l record
° ® The distance function is
«° ted to estimat
. X computed to estimate
Rainfall R, AP fuzzy weight
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UNEEC details. Step 1: clustering

O

Clustering (finding groups of data in the space characterising

hydro-meteo condition): K-means clustering, fuzzy C-means
clustering

Obj. function minU,V) J,,(U,V)= Z Z,ul, JD2

j=li=l
Dlstance D2 - =||X: —V: tembership functions
AL VY i
a . . : :
Degree Of m21 1D EP 4.0 B.D 80 mln 1?0 1110 n?u 18.0 200
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Output

UNEEC details. Step 2: Determining
Prediction Interval (PI) for each cluster

PIC; =¢; == i 5 1 j <a/2§ﬂz,]

k 1 i=1
PICY =¢, m==> ;
J l Z /uz,]<(l 05/2)2/11,]
k=1 i=1
Z,uz ]
\ Z Hi j
’ Upper prediction interval L=
—~ | = 4 Upper prediction limit (l1-a/2) ‘Z Hi j
c_“ : 7—1
S |
fo X Model output
£ ! S
5 | i
| .
2 ¢ Observed valu N
o | al2y pi;
: i=1
|
-~ | 7~ 4 Lower prediction limit
L | l l l l l l l l I
Lower predlictlon interval 2,65 -1.56 -1.45-1.45 -0.23 0.58 1.12 |1.13 1.85 2.01 2.69 ©
j g Lower interval  Upper interval

Examples
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UNEEC details.
Step 3, 4, 5: Building and using the model

[
|

Tim:

C
PIi = Y p; PIC}|

Jj=1

PI" = f/(X,)
PI" = f/(X,)

PL; =y, +PI/
H_I

PI" =,/ (X,)

Independent Computation

prY =9, +pPr’
H_J
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PI{ = ¥ u; ; PIC}
j=1

PI" = f,; (X)

each example

Step 3: Generation of
Prediction intervals for

Step 4: Building the
uncertainty Model

Step 5: Using the
uncertainty Model

Model Outputs with
uncertainty bounds

-
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Model
p=M(X

Model
residuals

Real World
System

UNEEC methodology

Data
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Extensions (simplifications) -

of UNEEC: T

without clustering and using..
instance-based learning

= Based on Master study of Omar Wani (2015)

= SKIBLUE (Streamflow-Centric K nearest neighbour Instance-Based
Learning and Uncertainty Estimation)

= O. Wani, J. Beckers, A.H. Weerts, D.P. Solomatine. Non-
parametric Predictive Uncertainty Estimation Using Instance Based
Learning with Applications to Hydrologic Forecasting. HESS-D,
2016.

= Based on Master study of Ms. Jingyi Chen (2015)
= UNEEC-IBL

= Jingyi Chen (2015). Uncertainty Prediction in Hydrological
Modelling: Case of Dapoling-Wangjiaba Catchment in Huai River
Basin. UNESCO-IHE Master thesis
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—— Escalating uncertainty —

Assuming now uncertainty
in parameters and or data...

Running Monte Carlo simulations...

But how to estimate output uncertainty for
the new model runs?

Models of Parametric Uncertainty .
... and again using Methods of
Computational Intelligence
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MLUE method
Machine Learning in Uncertainty Estimation

= machine learning model of the process model’s Monte
Carlo simulation results is built

D. L. Shrestha, N. Kayastha, and D. P. Solomatine (2009). A novel approach to parameter
uncertainty analysis of hydrological models using neural networks. HESS, 13, 1235-1248.
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Monte Carlo simulation of parametric uncertainty
y=M(x,s,0)te tegte +e

0.02f

o
o
-_—
o

0.01

Prob.Density

o
o
S
o

4000t
3000
2000
1000

Discharge

O 1
130

o

140

150

160

FC

170

190 1.3 14 15 1.6 1.7 1.8
ALPHA

180

0.2

0.1

14 10 1 12 13 14
x10'3 MAXBAS

20

40

60 80

. Time .
D.P. Solomatine. Escalation of uncertainty.

100 120 140

40



Issues with MC for new model runs in
real-time

= Issues with re-running MC for new inputs:

= 1) convergence of the Monte Carlo simulation is very slow
(O(N~-0.5)) so larger number of runs needed to establish a

reliable estimate of uncertainties

= 2) number of simulation increases exponentially with the
dimension of the parameter vector ((O(n”d)) to cover the
entire parameter domain

m Idea:
m encapsulate the results of MC simulation in @ machine
learning model

D.P. Solomatine. Escalation of uncertainty.
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MLUE Methodology (1)

= Consider the sources of the uncertainty analysis to be
conducted within the framework of Monte Carlo simulation

= Execute the MC simulations to generate the data
yi(t) = M (X(t), p)

= Estimate the uncertainty measures of the MC realizations,
e.g., mean, variance, prediction intervals, quantiles

= to start with, estimate two quantiles (say, 5% and
95%), forming the prediction interval PI

D.P. Solomatine. Escalation of uncertainty.
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MLUE Methodology (2)

Analyze the dependency of the uncertainty measures
(quantiles) on the input and state variables of the

hydrological model

= we used Correlation and Average mutual information

analysis
Select the input variables for machine learning model
based on the dependency analysis

Train the machine learning model U to predict the
uncertainty measures of MC realizations P/ = U (X)

Validate machine learning model U by estimating the
uncertainty measures with the “new” input data

Use model U

D.P. Solomatine. Escalation of uncertainty. 43



Validation

= Measuring predictive capability of uncertainty model ¢/ (measures the

accuracy of uncertainty models in approximating the quantiles of the
model outputs generated by MC simulations)

n Coefficient of correlation (r) and

Measuring the statistics of the unce
the model U as uncertainty estimatc

= Prediction interval coverage prol
mean prediction interval (MPI) (

root mean squared error (RMSE)

rtainty estimation (i.e. goodness of
r)

bability (PICP) and

Shrestha & Solomatine 2006, 2008)

n
MPI = lX(PL? — PLE)y

n
PICP=12C
i
L < < U
with ¢ = 41 PLi = ve =Pl
0, otherwise

Visualizing such as scatter and time

P

plot of the prediction intervals

obtained from the MC simulation and their predicted values

D.P. Solomatine. Escalation of uncertainty.
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Study area: Brue catchment, UK
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* Catchment area: 135 km?
* Location: south west of England
* Average annual rainfall: 867 mm

e Mean river flow: 1.92 m3/s

 Calibration data: 24/06/94-
24/06/95

 Validation data: 24/06/95-
31/05/96
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Study area: Brue catchment, UK
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Conceptual Hydrological model HBV

SF - Snow
RF - Rain
EA - Evapotranspiration

SP - Snow cover

IN - Infiltration

R - Recharge

SM - Soil moisture

CFLUX - Capillary transport
UZ - Storage in upper reservoir
PERC - Percolation

LZ - Storage in lower reservoir
Qo - Fast runoff component
Q1 - Slow runoff component

Q - Total runoff

Transform
function

AN

D.P. Solomatine. Escalation of uncertainty.
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Data Analysis

= Analysis of dependency btw various combinations of the
input variables and the output

= Correlation
= Average mutual information (AMI) between REtand Pls,
( optimal lag time is around 7-9 hours).

= Additional analysis of the correlation and AMI between the
PIs and observed discharge Qf are carried out. (i.e. with
the lag of O, 1, 2) have very high correlation with the PIs.

D.P. Solomatine. Escalation of uncertainty. 49



Experimental setup

= MC simulation

= 9 Parameters of HBV model are sampled uniformly from
the feasible ranges

= Nash-Sutcliffe coefficient of efficiency (CE) is used as error
measure

= Convergence — stabilized after 10,000 (75,000 runs made)

= Only 25,000 “good” models considered (rejection threshold
is set to 0) to compute prediction quantiles

D.P. Solomatine. Escalation of uncertainty.
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Experimental setup

= Machine learning model U
s PI =U(REts5y Qry AQks)
= PI - lower or upper prediction intervals,
m RE, s - average of RE, 5 RE,, RE;, RE, g and RE,

- AQt—J - Qz‘-] - Qt—Z'
= Input variables were selected based on the analysis of their
relatedness to output error (average mutual information)

Pyy (x;, ;)
Py (x)) By ()

AMI=)  Pyy (x;,;)log,
i,
= Methods:
= M5 model trees,
= locally weighted regression
= MLP neural networks

D.P. Solomatine. Escalation of uncertainty.
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Results
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UNEEC: Performance (MLP ANN)
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Prediction interval Data set Mean Std. dev. RMSE  Corr. coef.
training 11091 53.6 5.9582  0.9937

lower Ccv 112.18  52.64 6.0852  0.9934
training+CV 111.35 53.32 5.9582  0.9937
training 115.16  55.11 3.9002 0.9975

upper Cv 116.69  54.18 3.9332  0.9974
training+CV 115.66  54.79 3.9002  0.9975
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UNEEC: Estimation of prediction intervals
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MLUE: Estimation of prediction intervals
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MLUE: Performances

n Predictive capability

m Goodness of

MCS = Monte Carlo
MT = M5 Model tree
LWR = local weighted regression
ANN =MLP neural network

unceritainty measures
Corr C RMSE MCS | MT LWR | ANN
PIL PIU PIL PIU
PICP |77.24 |66.97 |75.16 | 65.54
MT 0.841| 0792| 0.614| 1.641 %
LWR | 0.822| 0.798| 0.643| 1.604 VPl 1209 1203 |193 |19
ANN | 0.847| 0.806| 0.584| 1.568 m3/s
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Extensions

= Estimation of several quantiles 5%, 10%:10%:90%, 95%
= i.e. estimating cdf of MC realizations by machine learning
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Use of Machine learning methods:
conclusions

Machine learning methods are able to replicate:
= Past performance of a process model
= Results of Monte-Carlo simulations

The methods are computationally efficient and can be
used in real time application

They are to various kinds of models

The results demonstrate that the interpretable
uncertainty estimates are generated

Future work:
= Other ML methods are to be tested

= The methods can be applied in the context of other
sources of uncertainty - input, structure, or combined
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Conclusions

= Uncertainty analysis should always contain explicit answers
to two questions:

= 1) what type of uncertainty is to be analysed: residual (which do not
need MC), or parametric/data (which need MC)

= 2) what is required: just analysis of the past, or also a model
predicting the future uncertainty

= It is advisable:

= to go explicitly through all stages of uncertainty escalation,
starting from residual uncertainty

= to try to build the predictive models of uncertainty at all stages

= complement the deterministic models M with a 7family of uncertainty
models U
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What to know more?

= We teach Master courses:
= Hydroinformatics
= Flood Risk Management

UNESCO-IHE i

Institute for Water Education

W FLOODRIsk
Master

Global Change = Hydroinformatics » Planning
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