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Outline

 Introduction: what are analysisng?

 Machine learning methods to (a) analyse and (b) predict 
the model uncertainty

 Suggested approach: “escalation” of uncertainty

 Examples
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Example for a quick start: deterministic 
forecasts and 90% uncertainty bounds 
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Sources of model uncertainty: perceptual, 
structure, parameters, data
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Traditional steps in uncertainty analysis 
of a calibrated model

 Identification of sources of uncertainty (input, parameter, 
model structure)

 Quantification of uncertainty (e.g. as distribution)

 Studying propagation of uncertainty through the model 
(e.g. by Monte Carlo simulation)

 Quantification of uncertainty in the model outputs (i.e. 
identification of output distribution (pdf) or its 
characteristics – mean, st.dev., quantiles) 

 If possible, reduction of uncertainty (e.g. model 
improvement, more accurate measurements, etc.)

 Application of the uncertain information in decision 
making process
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Data uncertainty (input, parameters): 
propagation of uncertainty through the 

model 
 y^ = M (x, p)

 x = input, p = parameters

 Uncertainty in X and p propagates to output y

 pdf of parameters   pdf of output       pdfp  pdfy
 pdf of inputs pdfx  pdf of output        pdfx  pdfy
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Monte Carlo Simulation
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Mote Carlo casino: roulette wheel

 It is a random number generator – uses 
uniform distribution with the range of [0, 36]
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Single model run (no uncertainty)
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Monte Carlo simulation in analysing 
parametric uncertainty
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Sampling parameters and multiple model runs
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Monte Carlo sampling: illustration
y = M(x, s, θ) + εs + εθ + εx + εy
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Sampling rainfall and multiple model runs
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Representing uncertainty of model 
output by the confidence bounds

Instead of fitting a theoretical distribution, we can use mean, 

standard deviation, quantiles. 

E.g.,  5% and 95% form the 90% confidence bounds 
14D.P. Solomatine. Escalation of uncertainty.
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Propagation of parameters/data uncertainty 
by Monte Carlo simulation 

is a typical practical approach.

But is it the only one?
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QUESTION 1. 
On assumptions

 We are assuming some known distributions of parameters 
or inputs. How safe is this?

 Could we take a safer route and assume less?

 Let’s make a step backwards and pose the 

QUESTION 1:

what is the uncertainty of the calibrated model itself?
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Residual uncertainty: uncertainty of a 
calibrated (“optimal”) model

 Uncertainty of an optimal model  M (x, θ)

 Model M is calibrated on measured data  y

 We say the model M uncertainty is manifested in the residual 
model error  ε = y^ – y

 This error incorporates all uncertainties due to:
observational errors, inaccurately estimated parameters, 
inadequate model structure

time

Output Y

Actual

Actual value  y*
(unknown)     

Model

Measured value  y

Model output  y^
MeasuredModel error

Observation error
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ESCALATION (“build up”) of model 
uncertainty [message 1]

 1. Study the (residual) uncertainty of an optimal model  
M (p*)

 2. Add and study (typically, by MC simulation)

 A) uncertainty of M (p*) due to DATA uncertainty

 B) uncertainty of M (p) due to PARAMETERS uncertainty

 3. Add and study uncertainty of M (p) due to 
STRUCTURAL  uncertainty

 4. Study uncertainty of a model class  M (p), given the 
probabilistic properties of parameters and data
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QUESTION 2.
On what is analysed

 In UA we always use the past data, so 
Estimates of uncertainty are about the PAST. 

 QUESTION 2:
how can we assess the model uncertainty for new inputs, 
i.e. for the future?
- and this question we pose for all sources of uncertainty (and not 
only residual )

19D.P. Solomatine. Escalation of uncertainty.

10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

Time (hr)

D
is

c
h
a
rg

e
 (
m

3
.s

)

q5

q95

?



Models of Residual Uncertainty : 
Using Methods of 

Computational Intelligence
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CI in building models of natural processes -
why not build a model of uncertainty?

 CI provides methods to build Data-driven models

 Ideally, such models are “ultimate models” since they are not 
polluted by theories

Input data
Natural 
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X

Actual (observed) 

output  Y

Data-driven

model

M (p, x)
Predicted output Y’

Error (p)  min
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Example of a data-driven (statistical, CI) 
model

 observed data characterises the 
input-output relationship 
X  Y

 model parameters are found by 
optimization

 the model then predicts output 
for the new input without actual 
knowledge of what  drives Y

Linear regression model

Y = a0 + a1 X

X 

(e.g. rainfall)

Y  

(e.g., flow)

new input 

value

actual 

output 

value

model 

predicts new 

output value

Which model is “better”:

green, red or blue?

red

green
blue
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CI models: are they indeed intelligent?
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Data-driven model as an error corrector
for a process (physically-based) model
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Data-driven model to predict the residual 
error distribution

Train data-driven model (e.g. Neural Network) to forecast residual error pdf
(i.e. the model M output uncertainty)
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Some of the models of residual 
uncertainty

 QR (1978) (quantile regression): autoregressive linear 
model of model residuals predicts the distribution quantiles 
[Koenker & Basset]

 DUMBRAE (2012) (Dynamic Uncertainty Model By 
Regression on Absolute Error) [Pianosi & Raso]: 
autoregressive model of model residuals (it corrects the 
model residual first and then carries out the uncertainty 
prediction by an autoregressive model)

 UNNEC (2006, 2009) (UNcertainty Estimation based on 
local Errors and Clustering) [Shrestha & Solomatine]: it 
takes into account all variables influencing such uncertainty 
and uses machine learning (non-linear) methods (neural 
networks, model trees, instance-based learning etc.)
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UNEEC method
UNcertainty Estimation based on local Errors and Clustering

 machine learning model of the past residual errors of the 
optimal process model is built

27D.P. Solomatine. Escalation of uncertainty.
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using machine learning techniques. Water Resources Res. 45, W00B11. 



UNEEC: assumptions, constraints

 Assumptions

 Model error is an indicator of the model uncertainty

 Model error depends on the current condition of a natural system 
and can be predicted

 Model errors are similar for similar conditions

 Constraints

 Model structure and parameters are fixed

 Need to re-train the error model with the changes in the 
catchment characteristics (e.g. land use change) 

 Data hungry, more data are needed for reliable results
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Error (Qt-Qt’)
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Idea 3: Use fuzzy clustering of examples to 
generate training data sets 

New record. The trained f 
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interval

Error limits

(or prediction 
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Using instance-based learning 

Error limits

(or prediction 

intervals)

Flow Qt-1

Rainfall Rt-2

past records 
(examples in the 
space of inputs)

New 
record

Output

  L

clus

Nclus

clus

exampleclus

L

example PICPI 



1

,

•clus,,example is the 

membership grade of 

the example to cluster 

clus

Instance based 

learning




The distance function is 
computed to estimate 
fuzzy weight

32D.P. Solomatine. Escalation of uncertainty.



� Clustering (finding groups of data in the space characterising 
hydro-meteo condition): K-means clustering,  fuzzy C-means 
clustering

UNEEC details. Step 1: clustering

Obj. function
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UNEEC details. Step 2: Determining 
Prediction Interval (PI) for each cluster
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UNEEC details. 
Step 3, 4, 5: Building and using the model
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UNEEC methodology
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Extensions (simplifications) 
of UNEEC: 

without clustering and using 
instance-based learning

 Based on Master study of Omar Wani (2015)
 SKIBLUE (Streamflow-Centric K nearest neighbour Instance-Based 

Learning and Uncertainty Estimation)

 O. Wani, J. Beckers, A.H. Weerts, D.P. Solomatine. Non-
parametric Predictive Uncertainty Estimation Using Instance Based 
Learning with Applications to Hydrologic Forecasting. HESS-D, 
2016.

 Based on Master study of Ms. Jingyi Chen (2015)
 UNEEC-IBL

 Jingyi Chen (2015). Uncertainty Prediction in Hydrological 
Modelling: Case of Dapoling-Wangjiaba Catchment in Huai River 
Basin. UNESCO-IHE Master thesis
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Models of Parametric Uncertainty : 
… and again using Methods of 

Computational Intelligence

––– Escalating uncertainty –––

38

Assuming now uncertainty 
in parameters and or data…

Running Monte Carlo simulations…

But how to estimate output uncertainty for 
the new model runs?



MLUE method
Machine Learning in Uncertainty Estimation

 machine learning model of the process model’s Monte 
Carlo simulation results is built

39D.P. Solomatine. Escalation of uncertainty.

D. L. Shrestha, N. Kayastha, and D. P. Solomatine (2009). A novel approach to parameter 
uncertainty analysis of hydrological models using neural networks. HESS, 13, 1235–1248. 



Monte Carlo simulation of parametric uncertainty
y = M(x, s, θ) + εs + εθ + εx + εy
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Issues with MC for new model runs in 
real-time

 Issues with re-running MC for new inputs:

 1) convergence of the Monte Carlo simulation is very slow 
(O(N^-0.5)) so larger number of runs needed to establish a 
reliable estimate of uncertainties

 2) number of simulation increases exponentially with the 
dimension of the parameter vector ((O(n^d)) to cover the 
entire parameter domain

 Idea:

 encapsulate the results of MC simulation in a machine 
learning model
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MLUE Methodology (1)

 Consider the sources of the uncertainty analysis to be 
conducted within the framework of Monte Carlo simulation

 Execute the MC simulations to generate the data
yi(t) = M (X(t), pi) 

 Estimate the uncertainty measures of the MC realizations, 
e.g., mean, variance, prediction intervals, quantiles

 to start with, estimate two quantiles (say, 5% and 
95%), forming the prediction interval PI
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MLUE Methodology (2)

 Analyze the dependency of the uncertainty measures 
(quantiles) on the input and state variables of the 
hydrological model 

 we used Correlation and Average mutual information 
analysis

 Select the input variables for machine learning model 
based on the dependency analysis

 Train the machine learning model U to predict the 
uncertainty measures of MC realizations PI = U (X)

 Validate machine learning model U  by estimating the 
uncertainty measures with the “new” input data

 Use model U

The picture can't be displayed.
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Validation 

 Measuring predictive capability of uncertainty model U (measures the 
accuracy of uncertainty models in approximating the quantiles of the 
model outputs generated by MC simulations) 

 Coefficient of correlation (r) and root mean squared error (RMSE)

 Measuring the statistics of the uncertainty estimation (i.e. goodness of 
the model U as uncertainty estimator)

 Prediction interval coverage probability (PICP) and 
mean prediction interval (MPI) (Shrestha & Solomatine 2006, 2008) 

 Visualizing such as scatter and time plot of the prediction intervals 
obtained from the MC simulation and their predicted values 

The picture can't be displayed.
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Applications

UNEEC and MLUE were tested and compared to 
other methods on 5 various cases: 

Brue, Bagmati, Sieve, Severn, Dapoling-Wanjiaba

45



• Catchment area: 135 km2

• Location: south west of England

• Average annual rainfall: 867 mm

• Mean river flow: 1.92 m3/s

• Calibration data: 24/06/94-

24/06/95

• Validation data: 24/06/95-

31/05/96

Study area: Brue catchment, UK
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Study area: Brue catchment, UK
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Conceptual Hydrological model HBV
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Data Analysis

 Analysis of dependency btw various combinations of the 
input variables and the output

 Correlation  

 Average mutual information (AMI) between REt and PIs, 

( optimal lag time is around 7-9 hours). 

 Additional analysis of the correlation and AMI between the 
PIs and observed discharge Qt are carried out. (i.e. with 
the lag of 0, 1, 2) have very high correlation with the PIs.
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Experimental setup

 MC simulation 
 9 Parameters of HBV model are sampled uniformly from 

the feasible ranges

 Nash-Sutcliffe coefficient of efficiency (CE) is used as error 
measure

 Convergence – stabilized after 10,000 (75,000 runs made)

 Only 25,000 “good” models considered (rejection threshold 
is set to 0) to compute prediction quantiles  
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Experimental setup

 Machine learning model U
 PI = U (REt-5a, Qt-1, Qt-1 )

 PI - lower or upper prediction intervals, 

 REt-5a - average of REt-5, REt-6, REt-7, REt-8, and REt-9

 Qt-1 - Qt-1 - Qt-2.

 Input variables were selected based on the analysis of their 
relatedness to output error (average mutual information)

 Methods:
 M5 model trees, 

 locally weighted regression 

 MLP neural networks
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UNEEC: Clustering result example
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UNEEC: Performance (MLP ANN)

0 50 100 150 200 250

50

100

150

200

250

Target lower interval (m3/s)

P
re

d
ic

te
d

 l
o

w
e

r 
in

te
rv

a
l 

(m
3
/s

)

0 50 100 150 200 250

50

100

150

200

250

Target upper interval (m3/s)

P
re

d
ic

te
d

 u
p

p
e

r 
in

te
rv

a
l 

(m
3
/s

)

Prediction interval Data set Mean Std. dev. RMSE Corr. coef. 

training 110.91 53.6 5.9582 0.9937 

CV 112.18 52.64 6.0852 0.9934 lower 

training+CV 111.35 53.32 5.9582 0.9937 

training 115.16 55.11 3.9002 0.9975 

CV 116.69 54.18 3.9332 0.9974 upper 

training+CV 115.66 54.79 3.9002 0.9975 
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UNEEC: Estimation of prediction intervals
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MLUE: Estimation of prediction intervals
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MLUE: Performances

 Predictive capability

MCS MT LWR ANN

PICP
%

77.24 66.97 75.16 65.54

MPI 
m3/s

2.09 2.03 1.93 1.96

Corr C RMSE

PIL PIU PIL PIU

MT 0.841 0.792 0.614 1.641

LWR 0.822 0.798 0.643 1.604

ANN 0.847 0.806 0.584 1.568

 Goodness of 
uncertainty measures

MCS = Monte Carlo
MT   = M5 Model tree
LWR = local weighted regression
ANN  =MLP neural network
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Extensions

 Estimation of several quantiles 5%, 10%:10%:90%, 95%

 i.e. estimating cdf of MC realizations by machine learning 
models
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Use of Machine learning methods:
conclusions

 Machine learning methods are able to replicate:
 Past performance of a process model

 Results of Monte-Carlo simulations

 The methods are computationally efficient and can be 
used in real time application 

 They are to various kinds of models

 The results demonstrate that the interpretable 
uncertainty estimates are generated

 Future work:
 Other ML methods are to be tested

 The methods can be applied in the context of other 
sources of uncertainty - input, structure, or combined  
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Conclusions

 Uncertainty analysis should always contain explicit answers 
to two questions:
 1) what type of uncertainty is to be analysed: residual (which do not 

need MC), or parametric/data (which need MC)

 2) what is required: just analysis of the past, or also a model 
predicting the future uncertainty 

 It is advisable:
 to go explicitly through all stages of uncertainty escalation, 

starting from residual uncertainty

 to try to build the predictive models of uncertainty at all stages

 complement the deterministic models M with a family of uncertainty 
models U
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What to know more?

 We teach Master courses:

 Hydroinformatics

 Flood Risk Management
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Thank you for your attention
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