Mesoscale high-resolution modeling of extreme wind velocities over the western water areas of Russian Arctic

PLATONOV V., KISLOV A.

LOMONOSOV MOSCOW STATE UNIVERSITY

FACULTY OF GEOGRAPHY

DEPARTMENT OF METEOROLOGY AND CLIMATOLOGY

OUTLINE

- Goal
- Methods and observational background
- COSMO-CLM model and experiments description
- Modeling results
- Conclusion and perspectives

<u>GOAL</u> - investigation of genesis and modeling extreme wind speeds over the western sector of Russian Arctic.

<u>data</u>

Observational data analysis of extreme wind speeds has shown <u>many interesting</u> <u>features of the describing Weibull distribution function</u>.

model

In [Kislov et al., 2015] it was shown, that extremes as "**<u>BS's</u>**" and "<u>**D's**</u>" couldn't reproduced by global climate models (e.g., INM-CM 4.0). Therefore, its investigation is reasonable using <u>mesoscale models</u> only.

Simulation of extreme winds over the western Arctic basin was performed using <u>COSMO-CLM</u> regional model.

It is climate version of the well-known non-hydrostatic regional atmospheric model COSMO developed by German Weather Service (DWD) and CLM-Community (<u>http://www.clm-community.eu/)</u>

experiments

COSMO-CLM model configuration.

- COSMO-CLM model, version 5.0 (from 09.2015)
- Rotational grid with tilted pole
- Arakawa C-grid, Lorenz vertical grid staggering
- Runge-Kutta integration scheme with 5th advection order
- 40 vertical levels (height based
- hybrid Gal-Chen coordinate)
- Prognostic TKE-based scheme for turbulence

 $0.44^{\circ} \sim 48 \text{ km}$ $0.165^{\circ} \sim 18.3 \text{ km}$ $0.12^{\circ} \sim 12 \text{ km}$ $0.025^{\circ} \sim 2.8 \text{ km}$ $0.22^{\circ} \sim 24 \text{ km}$ $0.15^{\circ} \sim 16 \text{ km}$ $0.0625^{\circ} \sim 7 \text{ km}$ $0.02^{\circ} \sim 2.2 \text{ km}$ $0.01^{\circ} \sim 1.1 \text{ km}$

experiments

Parameters of <u>experiments</u>	Two model domains using downscaling		
Experiment's duration	Approx. 7 days		
Horizontal resolution	0.165 ⁰ (~18 km)	0.025 ⁰ (~2.8 km)	78°N 18 km
Domain size (number of points)	164*146*40	380*400*40 326*364*40	72°N-
Time step, s	100	40	териберка
Initial and boundary conditions	ERA-Interim (~0.75 ⁰)	COSMO- CLM 18 km	
Dates of extreme wind speeds for experiments			15°W 0° 15°E 30°E 45°E 60°E 75°E 90°E
"Black swans" 15.12.1997 29–30.10.2000 26.01.2002 28.12.2003	<i>"Dragons"</i> 17.12.1997 05.02.2003 22.11.2010 12.12.2013		<u>Model domains and stations</u> (using downscaling)

RESULTS <u>12.12.2013</u> <u>18 km</u>

RESULTS

26.01.2002

<u>18 km</u>

15-17.12.1997

18 km

10m wind direction and velocity, Date 17-Dec-1997 09

CONCLUSION AND PERSPECTIVES

Overall statistics for 3 cases

Station Teriberka	Correlation coefficient	Mean error	Median error	RMSE	STD
2013 18 км	0,90	-1,49	-1,00	3,63	3,34
1997 18 км	0,86	-1,43	-0,87	3,95	3,71
2002 18 км	0,67	-0,31	-0,60	4,20	4,23
2013 2,8 км	0,87	-2,88	-2,27	4,73	3,80
1997 2,8 км	0,88	-3,07	-2,45	4,71	3,60
2002 2,8 км	0,82	-3,31	-2,76	5,00	3,78

The COSMO-CLM model reproduces the synoptic-scale dynamics and general synoptic-scale wind velocity patterns well as both with the <u>0.12^o (18 km), and ~3 km</u> resolutions.

Model with **<u>2.8 km resolution</u>** succeed to reproduce detailed spotty wind pattern, caused by local orography or/and dynamic factors.

Statistics doesn't show define result regarding an improvement of extreme wind speed reproduction.

CONCLUSION AND PERSPECTIVES

These statistics results may be due to many features of assessment.

- Model underestimates observed mean values and wind gusts over seashores up to 2 - 4 m/s systematically.
- It could be interpreted as follow: such extreme speeds of air particles (15 20 m/s and more) doesn't make much physical sense to focus on wind velocity at a certain point. Therefore, we can consider wind velocity values for some surrounding area, according to the distance, corresponding to wind velocities.

With respect to revealing many differences between <u>"black swans"</u> and "<u>dragons"</u> situations, there were found out no clear distinctions.

- We can assume it caused by the rare overlay of the large-scale synoptic factors and many local meso- and microscale factors (surface, coastline configuration etc.).
- Generally, COSMO-CLM model reproduces wind velocity pattern quite adequately.

<u>Future work</u>: fine-tuning and adaptation of the model configuration to the Arctic basin, more precise estimation methods, more case-studies, etc. However, in general it can be argued that further studies of the extreme wind speeds genesis in the Arctic, such as the "black swans" and "dragons", necessary to focus on **nonhydrostatic high-res. (5 km and less) modeling using downscaling techniques.**

ADDITIONAL SLIDES...

$$\frac{n}{N} \approx F(U) = 1 - e^{-AU}$$

$$\vec{k} \ln\left[-\ln\frac{N-n}{N}\right] = k\ln U + \ln U$$

Weibull distribution and coordinates

$$U(p) = \left(\frac{1}{4}\ln\frac{1}{1-p}\right)^{1/k}$$

(threshold <u>p</u> was accepted as <u>p=0.99</u>)

 $\Phi(U) = 1 - \left(\frac{U_{th}}{U}\right)^{\Upsilon}$

 $V_{
m tur}$

Pareto distribution with U_{th} (threshold)

COSMO scheme for diagnosis near-surface wind gusts ([Schulz, Heise, 2003]):

$$\frac{1}{1 + \alpha \sqrt{C_{\rm m}}} V_{\rm KE} = \sqrt{\beta \int_0^H 2g \frac{\Delta \Theta}{\Theta} dz + V(H)^2}$$

 $V_{
m gust} = \max(V_{
m turb}, V_{
m conv})$

