

A Simplified Extended Kalman Filter assimilation of soil moisture for SL-AV global medium-range weather forecast model

Makhnorylova S.V.^{1,2}, Tolstykh M.A.^{2,3}

1 – Siberian Regional Hydrometeorological Research Institute, Novosibirsk
2 – Hydrometeorological Research Centre of Russian Federation, Moscow
3 – Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow

Goal: implementation of the Simplified Extended Kalman Filter (SEKF) for deep soil moisture initialization in the SL-AV global atmosphere model

The SL-AV – global operational NWP model (by Tolstykh M. et al) -- 0.72 x 0.9 ° lat-lon resolution (~ 75 km in mid-latitudes) -- 28 vertical levels

Input data

- Screen-level temperature (SYNOP)
- Screen-level relative humidity (SYNOP)

Advantages of SEKF

- «cheap» calculations
- elements of Kalman matrix take into consideration meteorological and soil conditions in every grid point implicitly
- potential ability to include satellite data into analysis

The Interaction Soil Biosphere Atmosphere (ISBA) parametrization (J.Noilhan and S.Planton, 1996)

- Scheme has 2 soil layers (depth of superficial layer ~1 cm, depth of deep soil from 0.1 to 10 m)
- Force-restore method (J.W.Deardoff, 1977-1978)
- Coupled with atmosphere

 $R_{g} R_{at} \propto R_{g} R_{I} H LE$

G

- 8 prognostic variables: the surface temperature (T_s), the deep soil temperature (T_p), the superficial soil water content in liquid (W_s) and in frozen (W_{si}) forms, the deep soil water content in liquid (W_p) and in ice (W_{pi}) forms, the interception water content (W_l) and snow water content (S_n).

Main analyzed variables

Energy fluxes

Water fluxes

Ę"

Eg

Wsi d_{o}

The simplified extended Kalman Filter (SEKF) (Balsamo, 2004 /Hess, 2001)

Linearization of observation operator is expressed by its first order Taylor expansion with a finite difference approach

 $\delta \mathbf{w}$ - deep soil moisture perturbations ; $\delta w = 0.01 m^3 / m^3$ **H**-linear estimate of the observation operator.

Gain Kalman matrix

R - observation error covariance matrix;

B - background error covariance matrix;

$$\sigma_{w_b}^2 = 0.01 M^3 / M^3$$

$$\sigma_{T_{2M}}^2 = 1K, \sigma_{RH_{2M}}^2 = 10\%$$

 $H(\mathbf{w} + \delta \mathbf{w}) = H(\mathbf{w}) + \mathbf{H} \delta \mathbf{w}$ $\mathbf{H} = \frac{H(\mathbf{w} + \delta \mathbf{w}) - H(\mathbf{w})}{\delta \mathbf{w}}$

$$\mathbf{H} = \frac{\mathbf{H}^+ + \mathbf{H}^-}{2}$$

 $\mathbf{R} = \begin{pmatrix} \sigma_{T_{2M}}^2 & \mathbf{0} \\ 0 & \sigma_{RH_{2M}}^2 \end{pmatrix}$

 $\mathbf{B} = \left(\boldsymbol{\sigma}_{w_{\iota}}^{2} \right)$

 $\mathbf{K}_{t-1} = \mathbf{B}\mathbf{H}^T \left(\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R}\right)^{-1}$

The simplified extended Kalman Filter (SEKF) (Hess, 2001)

Forecast step

 $\mathbf{w}_{t}^{b} = M_{t-1} \left[\mathbf{w}_{t-1}^{a} \right]$ $\mathbf{w}_{t}^{b} \text{ - forecast vector of deep soil moisture}$ $\mathbf{w}_{t-1}^{a} \text{ - previous analysis vector}$ $M_{t-1} \text{ - forecast model (ISBA)}$

Analysis step

$$\mathbf{v}_{t-1}^{a} = \mathbf{w}_{t-1}^{b} + \mathbf{K}_{t-1} \Big[\mathbf{y}_{t}^{o} - \mathcal{H} \Big(\mathbf{w}_{t-1}^{b} \Big) \Big]$$

- \mathbf{y}_{t-1}^{o} observation vector at moment *t-1*; (screen-level temperature and relative humidity observations at grid point)
- $\mathcal{H}(\mathbf{w}_{t-1}^{b})$ first guess field of screen-level temperature and relative humidity \mathbf{K}_{t-1} - gain matrix at moment *t*-1;
 - non-linear observation operator;

Comparison of the SL-AV forecast errors with SEKF and OI assimilation techniques. July 2014

Mean absolute errors T_{2m} °C

Comparison of the SL-AV forecast errors with SEKF and OI assimilation techniques. January 2015

-- forecast start at 12 UTC daily

Conclusions

- The Simplified Extended Kalman Filter (SEKF) has been implemented for deep soil moisture initialization in the SL-AV global atmosphere model instead of OI method.
- Analysis of monthly averaged absolute (RCOA) and root-mean square errors (RMSE) of daily T_{2M} and RH_{2M} forecasts in July 2014 and January 2015 shows error decrease, more notable in July.

 Implementation of the SEKF essentially improves quality for screen-level temperature and humidity 3days forecasts by the SL-AV over both assessed regions.

Thank you for attention!

