

Interannual variability of atmospheric carbon dioxide over Central Siberia from ZOTTO database (2009 – 2015)

¹Timokhina A.V., ¹Prokushkin A.S., ¹Sidenko N.V., ¹Kolosov R.A., ²Lavric J. V., ²Heimann M.

¹Laboratory of biogeochemical cycles in forest ecosystems, V.N. Sukachev Institute of forest SB RAS, Krasnoyarsk, Russia; ²Max Plank Institute for Biogeochemistry, Jena Germany.

International conference and Early Career Scientists School on Environmental Observations, Modeling and Information Systems, Enviromis 2016

July 11-16, 2016. Tomsk, Russia

Global growth of CO₂ concentration in atmosphere

The aim of study was

to estimate the interannual variability of carbon dioxide in the atmosphere over Central Siberia from ZOTTO dataset (2009-2015).

Zotino Tall Tower Observatory (ZOTTO) http://www.zottoproject.org/

The station is located in Central Siberia at **60°48' N, 89°21'E**, about 30 km west of the Yenisei River (114 m a.s.l.).

The annual precipitation sum ranges from **500 to 600 mm**.

Mean cumulative seasonal footprint climatology for the 301-m height of ZOTTO made from 10 days back trajectories for every three hour from 1st of May to 30th of September for four years (2008, 2009, 2010, and 2012) applied STILT model.

Continuous measurements

1. Samples of air are analyzed from 301 m).

 CO₂ concentration is measured by Envirosense 3000I Multi-Species Atmospheric Monitor (Picarro, USA) established in container near bottom of tower with measuring frequency of twice per minute.

CO₂/CH₄/H₂O concentration high-precision monitoring

Statistical analysis

We use only daily data from 13:00 to 17:00 local time

To decompose the CO_2 time series into a long-term trend and seasonal and interannual components, we used the curvefitting procedures developed by Thoning et al. [1989].

We ran the routine using a quadratic polynomial to fit the trend, four annual harmonics for the seasonal component, and short and long frequency cutoff parameters of 100 and 650 days in the Fast Fourier Transform low-pass filtering in order to remove high-frequency noise and isolate the trend component.

The fitting procedure was repeated four times in order to remove daily averages lying outside three standard deviations.

The previous result:

Daily CO₂ concentration time series obtained at ZOTTO from 1st of May 2009 to 31st of December 2015 with fitting curve

Annual amplitude of CO₂ concentration

Year	Summer Minimum, μmol/mol	Winter Maximum, μmol/mol	Annual amplitude, μmol/mol
2010	-18.4	8.0	26.4
2011	-17.7	9.0	26.7
2012	-17.6	7.9	25.2
2013	-17.5	7.8	25.3
2014	-18.1	8.6	26.7
2015	-17.5	9.1	26.6
average	-17.8 ±0.4	8.4 ±0.6	26.2 ±0.6

There is no long-term change in CO₂ seasonal amplitude for six years

Seasonal phase of CO₂ concentration

Year	Downward zero crossing	Upward zero crossing	Length	y = -0.5995x + 94.97 () 12 $y = -0.446x + 133.57$
2009	154	282	129	$\begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
2010	150	283	134	6 6 6 6
2011	142	276	135	
2012	145	278	134	140 145 150 155 \cancel{S} 275 280 285 290 Downward zero crossing DOYUpward zero crossing DOY
2013	151	289	139	145
2014	153	288	136	s 140 b 135
2015	143	284	142	y = 1.6786x + 128.86
Average	148±5 May, 28	282±5 October, 9	135 ±4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Growth rate variability of CO₂ concentration

CO₂ concentration increases from 390.7 to 402.2 ppm for seven years at ZOTTO

About 2.3 ppm/year

3.8 µmol/mol in 2010 and 2012 1.5 µmol/mol in 2011 and 2013

The same tendency is in world and other boreal forest

Conclusions

For the period from 2009 to 2015 the seasonal cycle amplitude of carbon dioxide concentration was 26.2 ± 0.6 µmol/mol without any long-term tendency.

At the same period the mean growth rate of carbon dioxide in atmosphere was 2.3 ppm/year. However, there was high inter-annual variability likely due to fluctuations in net ecosystem productivity and carbon dioxide emissions (e.g. from forest fires).

To detect long-term trends in amplitude and phase of atmospheric CO_2 in inland regions like ZOTTO, long periods of measurements are necessary to improve the statistical significance of the observations.

ACKNOWLEDGMENTS

This research has been supported by the Russian Foundation for Basic Research (16-35-00110).

Thank you for your attention!

13/13