

Methods and devices of radiation safety in the circumpolar regions of Siberia

Gafarova V.V., Kulagina T.A. Siberian Federal University

July 11-16, 2016 Tomsk, Russia

For continuous monitoring the radiation situation in Russia to create a unified state automated radiation monitoring system (EGASKRO), which consists of a network of monitoring stations across the country. These positions, including installed settlements. Coordinate the establishment development of EGASKRO involved Roshydromet. Forming regional monitoring system, the overall structure involved previously created territorial and sectoral radiation monitoring system.

The basis of automated radiation monitoring system (ARMS) are:

system power control posts dose of photon radiation, placed on the ground; a set of sensors that measure meteorological parameters, on indications which is determined by the condition of stability of the atmosphere;

process sensors for determining the emissions of radioactive impurities in the atmosphere;

software upper and lower levels.

Detection units BDKG-22, BDKG-23

Gamma radiation detector			
BDKG-22	Geiger-Muller counter tube with energy compensating filter		
BDKG-23	Two Geiger-Muller counter tubes with energy compensating filters		
Energy range	60 keV 3 MeV		
Measurement range of ambient gamma radiation dose rate [BDKG-22]	0.1 μSv/h 10 Sv/h		
Measurement range of absorbed gamma radiation dose rate [BDKG-23]	0.1 μGy/h 100 Gy/h		
Limit of dose rate measurement intrinsic relative error	±20%		
Energy dependence relative to 662 keV (137Cs)	-25% +35% (for energy range from 60 keV to 3 MeV)		
Initialisation time	≤1 min		
Continuous run time	24/7 operation		
Burn-up life	≥100 Sv		
Power supply	External DC power source, form 9 to 30 VDC		
Protection class	IP67		
Communication and data transfer to user hardware	RS 422 / RS 485		
Operation temperature range	-40 +70°C		
Relative humidity with air temperature ≤35°C without condensation	≤98%		
Dimensions	Ø60x255 mm		
Weight	1 kg		

Advantages detection units are:

- •rapid adaptation to changes in radiation levels;
- constant checking of;
- •continuous round the clock work with preservation specifications within the standards;
- •ability to work in harsh climatic conditions.

Location scheme of radiation monitoring

РАДИАЦИОННАЯ ОБСТАНОВКА (МЭД, мкР/ч)

П/ П	Название	Последнее измерение	Среднее	Время максимума	Максимум
1	Лаборатория РЦ	15.07.2016 10:58	9	14.07.2016 22:35	10
2	село Атаманово	15.07.2016 11:54	8	15.07.2016 01:22	10
3	оздр. лагерь ''Горный''	15.07.2016 11:04	13	15.07.2016 02:57	14
4	КПП-1	15.07.2016 11:11	12	15.07.2016 04:47	14
5	КПП-3	15.07.2016 11:15	10	15.07.2016 10:57	12
6	КПП-4	15.07.2016 12:36	13	15.07.2016 10:52	14
8	с. Сухобузимское	15.07.2016 11:18	12	15.07.2016 02:46	14
10	село Шивера	15.07.2016 11:18	12	15.07.2016 01:55	14
11	ЗДУ2 (г.Железногорск)	15.07.2016 11:24	14	14.07.2016 20:37	17
12	АТС-4 (г.Железногорск)	15.07.2016 11:35	11	15.07.2016 04:45	12

МЕТЕОУСЛОВИЯ (Ветер)

Π/Π	Название	Последнее измерение	Скорость	Направление
1	Лаборатория РЦ	15.07.2016 10:58	0.19	222
12	АТС-4 (г.Железногорск)	15.07.2016 00:20	0.19	42

Thank you for attention!