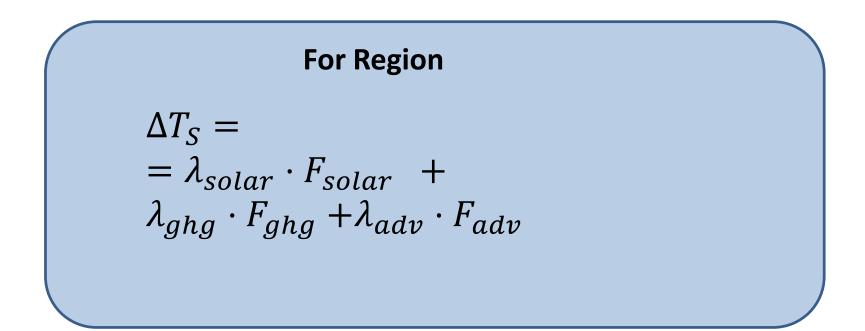
Regional features of the main climate-forming factors contribution to the variability of the temperature regime over the Asian territory of Russia in the beginning of the 21st century

Loginov S.V., Kharyutkina E.V., Usova E.I.

Institute of monitoring of climatic and ecological systems SB RAS 634055, Russia, Tomsk, 10/3 Academichesky ave., e-mail: <u>kh_ev@mail2000.ru</u>



To study the peculiarities of climate variability in northeastern Eurasia at the beginning of the 21st century against the slowdown of global climate warming: TOA radiation balance, surface air temperature and the ocean heat content in the near surface layers

Variability of surface temperature

 λ - the climate sensitivity parameter, K/(W/m²)

 ΔF - the radiative forcing, W/m²

 $\Delta T_{\rm S} = \lambda F$

Net Radiation at TOA (W/m²)

$$F_{solar} \equiv B_{TOA} = Q_{\downarrow 0} - Q_{\uparrow \infty} - L_{\uparrow \infty}$$

 $Q_{\downarrow 0}$ – downward shortwave (SW) radiation at TOA, $Q_{\uparrow \infty}$ – upward SW radiation from TOA, $L_{\uparrow \infty}$ – upward longwave radiation (LW) from TOA

Net Radiation at Surface (W/m²)

$$F_{solar} \equiv B_{Surf}$$

= $\delta Q_{SW} + \delta Q_{LW} + LE + SE$

$$\delta Q_{SW}$$
 – net shortwave radiation
 δQ_{LW} – net long-wave radiation
 $LE + SE$ – turbulent heat flux at surface

Forcing due to atmospheric gas (W/m²)

$$F_{\text{greenhouse gas}} \equiv C_{forc} = F_{\text{CO2}} + F_{\text{CH4}}$$

$$F_{\text{CO2}} = F_{CO2}^{SW} + F_{CO2}^{LW}$$
$$F_{\text{CH4}} = F_{CH4}^{LW}$$

Database CAMS Climate Forcing Estimates 2003-2012

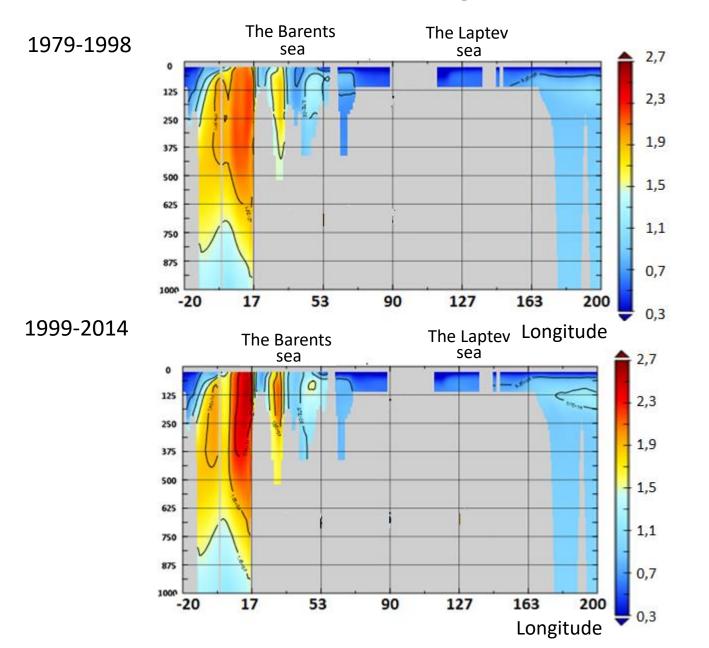
Advection of Heat / Cold (W/m²)

$$\vec{V}$$
 – wind
 $\vec{\nabla}H = mC_v\vec{\nabla}T$ – enthalpy gradient

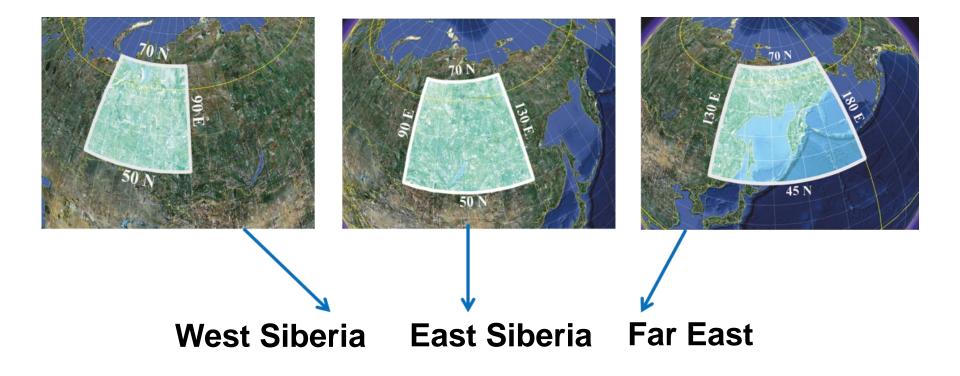
$$F_{adv} \equiv Q_{adv} = -\vec{V} * \vec{\nabla} H$$

The directions of the velocity vector and the heat gradient determined the state: "Inflow" / "Outflow" of heat (cold) air

The average annual trend of sea surface temperature (SST_{tr}) and ocean heat content (Q_{Tr}) in the near-surface layer (0-300 m) in the Atlantic and Pacific Oceans


Region	SST _{tr} , °C/dec	Q _{Tr} 10 ⁸ , J/m²/dec							
	1999 - 2014	1999 - 2014							
North Atlantic									
Subpolar Circulation	0,37	3,61							
Subtropical Circulation	0,13	-0,68							
Gulf Stream	0,29	-2,48							
	North Pacific								
Subpolar Circulation	0,17	3,41							
Subtropical Circulation	0,01	-0,41							
Kuroshio	0,07	-0,85							
Significant values are in hold (α =		dEDA Interimente and straig							

Significant values are in bold ($\alpha=0.05$)

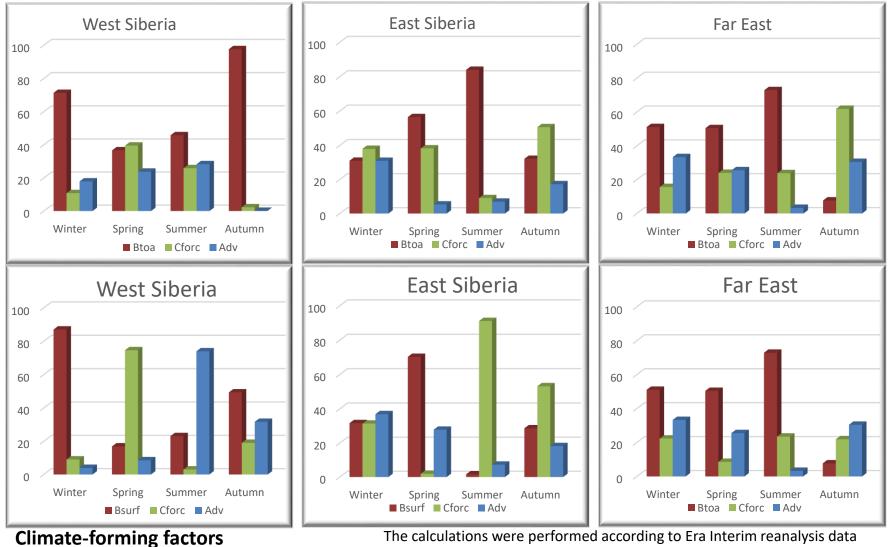

CFSR and ERA-Interim reanalysis

At the beginning of the 21st century the increase in Q values is mainly occurred at high latitudes in the near-surface layer

The depth profile of the ocean heat content Q (10⁷ J/m²) in the Arctic Ocean along the latitude of 75°N

Regions of under study

Changes in climate-forming factors in selected regions 2003-2012


	B _{toa} , W/m² /dec			C _{forc} , W/m ² /dec		$Q_{adv} * 10^{-10}$, W/dec			
	West Siberia	East Siberia	Far East	West Siberia	East Siberia	Far East	West Siberia	East Siberia	Far East
Winter	3,86	7,97	0,04	0,30	0,15	0,11	-270	97	-230
Spring	1,98	-0,77	0,41	0,16	0,23	0,12	150	23	450
Summer	-5,06	4,25	7,76	0,11	0,11	0,09	49	9	-180
Autumn	4,12	2,99	1,22	0,16	0,19	0,12	-24	-220	-170

The calculations were performed according to ERA-Interim reanalysis data

B_{toa}- the total amount of energy per unit surface per month,

 Q_{adv} – the average monthly advective total (over all faces) energy inflow in the surface layer (to a level of 700 hPa).

Contributions (%) of climate-forming factors to changes in surface temperature for selected regions in 2003-2012

The calculations were performed according to Era Interim reanalysis data

- B_{toa} Net Radiation at TOA, B_{surf} Net Radiation at Surface,
- C_{forc} radiative forcing of greenhouse gases (carbon dioxide and methane),

Adv - advective heat influx

ENVIROMIS 2018 July 5-11 Tomsk Russia

Results

- Regional peculiarities of the contribution of the main climate-forming factors to the temperature regime of the Asian territory of Russia during the period 2003-2012 were revealed.
- □ It is established that the radiation forcing of greenhouse gases prevails in spring in West Siberia (up to 40%), in winter and autumn in East Siberia (up to 50%) and in autumn in Far East (up to 60%).
- □ The contribution of advective heat transfer (up to 33%) exceeds the contribution of radiation forcing of greenhouse gases in winter and summer in West Siberia and in the winter in the Far East (33%).
- The results revealed regional and seasonal features in the mechanisms of global warming, which are necessary for monitoring and modeling of regional climate changes.

Thank you for attention