

Московский государственный университет имени М.В. Ломоносова Географический факультет Кафедра метеорологии и климатологии

Численное моделирование термического режима лесной экосистемы

Масляев М. А. 1 , Степаненко В.М. 1,2 , Курбатова Ю.А. 3

¹ МГУ им. М.В. Ломоносова, Москва,

² НИВЦ МГУ им. М.В. Ломоносова, Москва,

³ Институт проблем экологии и эволюции имени А.Н. Северцова

Задачи:

- Переход от однослойной модели лесной экосистемы для блока деятельного слоя модели земной системы ИВМ РАН к многослойной;
- Разработка прототипа модели лесного полога, включающего в себя элементы:
- 1. Вычисление потоков коротковолновой и длинноволновой радиации внутри полога леса
- 2. Решение уравнений переноса тепла и влаги в пологе;
- 3. Вычисление потоков скрытого и явного тепла на верхней границе;
- Провести валидацию модели на основе данных наблюдений из Центрально-Лесного заповедника (мачта Фёдоровское);

Перенос тепла в пологе леса:

• Решение уравнения теплопроводности:

$$\rho C_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + Q,$$


• Дискретизация уравнения (с учетом изменения λ с высотой по [Flerchinger, Pierson, 1991]):

$$\lambda = ku^* \frac{(z - d + z_h)}{\phi_s},$$

$$\frac{-\Delta Q_{s,i}}{\Delta z_{i}} + \rho C_{p} \frac{T_{i+\frac{1}{2}}^{n+1} - T_{i+\frac{1}{2}}^{n}}{\tau} = \frac{1}{\Delta z_{i}} \left(-\lambda_{i} \frac{T_{i-\frac{1}{2}}^{n+1} - T_{i+\frac{1}{2}}^{n+1}}{\frac{1}{2} (\Delta z_{i-1} + \Delta z_{i})} + \lambda_{i+1} \frac{T_{i+\frac{3}{2}}^{n+1} - T_{i+\frac{1}{2}}^{n+1}}{\frac{1}{2} (\Delta z_{i+1} + \Delta z_{i})} \right)$$

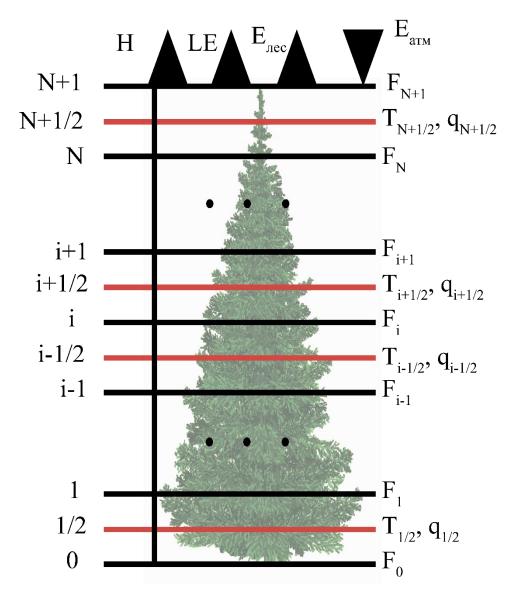
Граничные условия:

- Верхняя граница: $F_{N+1}^{n+1} = H + LE + \Delta E$,
- Нижняя граница: $F_0^{n+1} = 0$,

Перенос водяного пара в пологе леса:

• Уравнение переноса водяного пара:

$$\frac{\partial q}{\partial t} = \frac{\partial}{\partial z} \left(\lambda \frac{\partial q}{\partial z} \right) + Q_{wv}$$
, где q — отношение смеси;


• Дискретизация уравнения :

$$Q_{wv,i} + \frac{q_{i+\frac{1}{2}}^{n+1} - q_{i+\frac{1}{2}}^{n}}{\tau} = \frac{1}{\Delta z_{i}} \left(-\lambda_{i} \frac{q_{i-\frac{1}{2}}^{n+1} - q_{i+\frac{1}{2}}^{n+1}}{\frac{1}{2} (\Delta z_{i-1} + \Delta z_{i})} + \lambda_{i+1} \frac{q_{i+\frac{3}{2}}^{n+1} - q_{i+\frac{1}{2}}^{n+1}}{\frac{1}{2} (\Delta z_{i+1} + \Delta z_{i})} \right),$$

• Параметризация испарения:

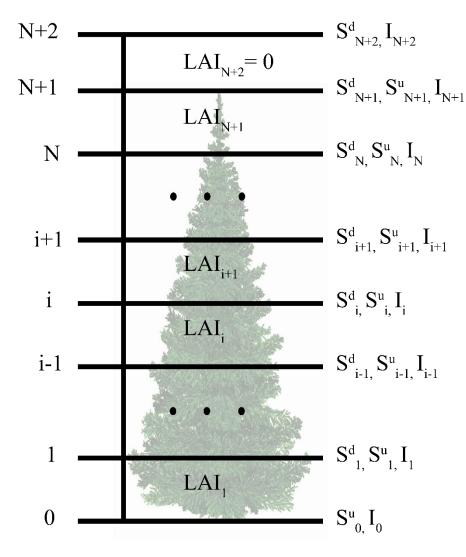
 $Q_{wv,i}$ = α max(cos(ψ), 0), где ψ – зенитный угол Солнца Граничные условия:

- Верхняя граница: $F_{wv}^{n+1}_{N+1} = LE$,
- Нижняя граница: $F_{wv_0}^{n+1} = 0$,

Перенос коротковолнового излучения:

- 2 спектральных диапазона: ФАР и ближний ИК;
- Вычисление переноса прямой радиации по закону Бэра-Бугера-Ламберта:

$$I_i = I_{i+1} exp(-K(\psi)_i * LAI_i), K(\psi)_i = \frac{\sqrt{x^2 + tan^2 \psi}}{x + 1.744(x + 1.182)^{-0.733}},$$

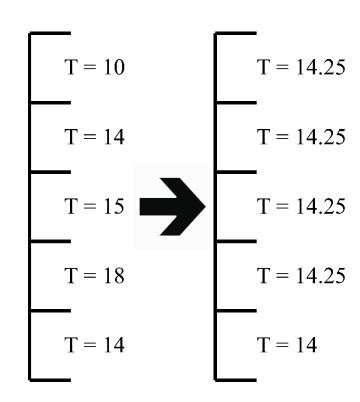

• Перенос рассеянной радиации - рассеяние на множестве слоев [Zhao, Qualls 2005]: решается система 2N+4 линейных алгебраических уравнений:

$$A \times S = C,$$

$$S = (S_0^u, S_1^d, S_1^u, \dots, S_i^d, S_i^u, \dots, S_{n+1}^d, S_{n+1}^u, S_{n+2}^d),$$

 S_j^u восходящие и S_j^d нисходящие потоки рассеянного излучения на j-ой границе слоев

- Правая часть (С) рассеяние прямой радиации;
- Матрица *A* трехдиагональная, система решается методом прогонки.


Конвективное приспособление:

• При неустойчивой стратификации выполняется конвективное приспособление:

$$T_i^{new} = T_{i+1}^{new} = \frac{\Delta z_i T_i^{old} + \Delta z_{i+1} T_{i+1}^{old}}{\Delta z_i + \Delta z_{i+1}}$$
 при $T_i^{old} > T_{i+1}^{old}$;

- Итерации приспособления до состояния, что во всем профиле температура не убывает с высотой;
- При перемешивании слоев приспособление профиля влажности:

$$q_i^{new} = q_{i+1}^{new} = \frac{\Delta z_i q_i^{old} + \Delta z_{i+1} q_{i+1}^{old}}{\Delta z_i + \Delta z_{i+1}}$$

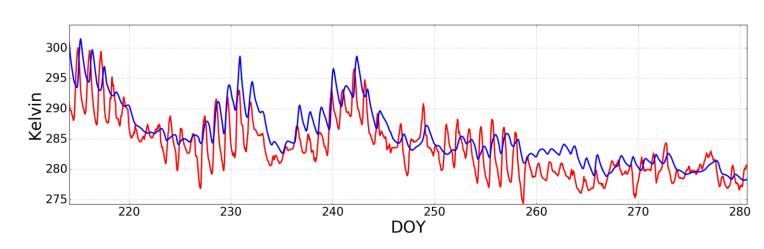
Данные измерений:

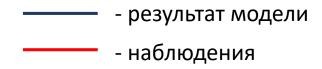
Входные данные для модели — измерения над пологом леса:

- Температура;
- Влажность;
- Скорость ветра;
- Нисходящая коротковолновая и длинноволновая радиация;
- Давление;

Данные для валидации:

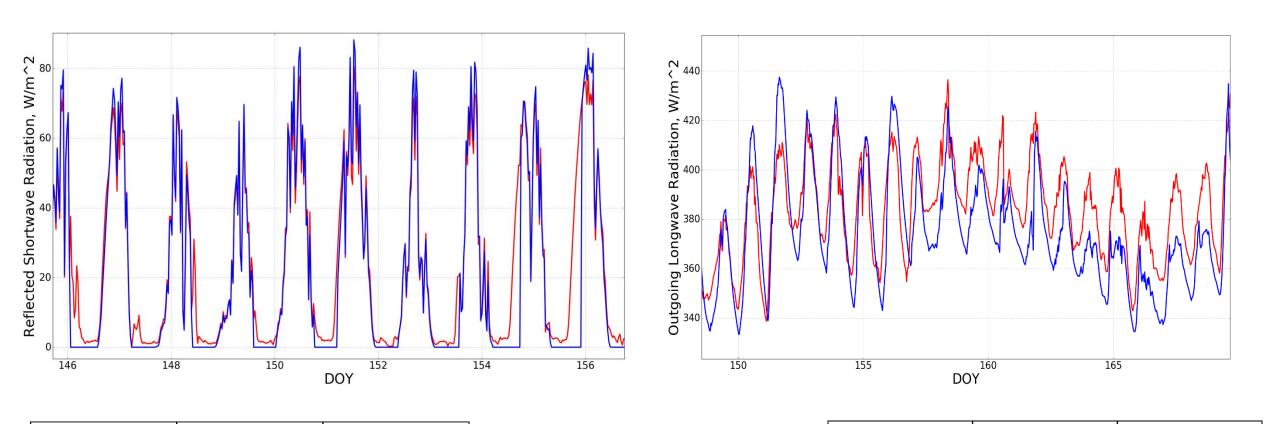
- Потоки скрытого и явного тепла на верхней границе полога;
- Значения температуры и влажности в пологе (0.5, 1, 2, 7, 14.5 метров).


Период наблюдений: с 4 апреля по 31 декабря 2017; **Дискретность** - 30 минут.



Воспроизведение вертикального распределения температуры в лесу:

14.5 M



0.5 M							
305							
.E. 295 290 290 285	Marken	MM.	M	Mad nad			
280 275	2 1140	14111 (%	<i>y</i> = 0, 1	mally apply all	MANNEY	hopp	
	220	230	240	DOY	260	270	280

Высота, м	Bias, K	r	Критерий Нэша- Сатклиффа
0.5	2.29	0.91	0.69
1	2.30	0.91	0.67
2	2.22	0.91	0.68
7	2.03	0.92	0.72
14.5	2.09	0.93	0.76

Отображение восходящих потоков коротковолновой и длинноволновой радиации над лесом:

результат модели

- наблюдения

Eff

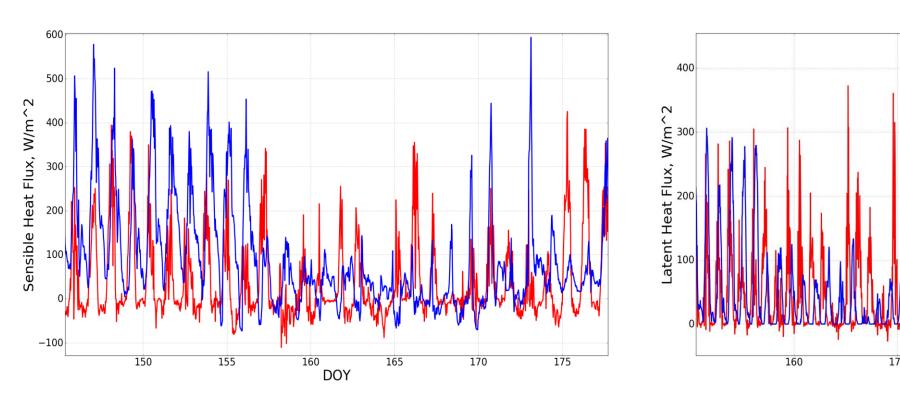
0.4

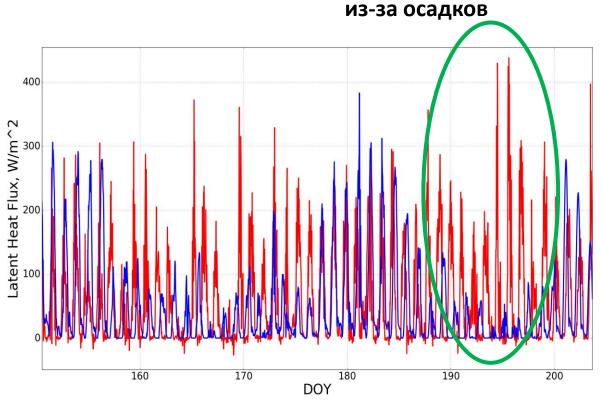
Bias, BT/M^2

-4.81

0.71

Bias, Bt/m^2


10.9


0.96

Eff

0.84

Отображение потоков явного и скрытого тепла над лесом:

Bias, Вт/м^2	r	Eff	
19.6	0.26	-0.76	

- результат модели

- наблюдения

Bias, Bt/m^2	r	Eff
-15.2	0.17	-0.33

Итоги работы и дальнейшие задачи:

Полученные результаты:

- 1. Был создан прототип модели, воспроизводящий потоки явного тепла и термический режим полога леса;
- 2. Выполнен численный эксперимент с использованием входных данных из Центрально-Лесного заповедника;
- 3. Проведены сравнения полученных результатов и полевых измерений;

Задачи:

- Уточнение оптических параметров крон деревьев на основе наблюдений из Центрально-Лесного заповедника;
- Параметризация перехвата осадков растительностью и их дальнейшего испарения.

Список литературы:

- Flerchinger G. N. and Pierson F. B. Modeling plant canopy effects on variability of soil temperature and water. Agric. For. Meteorol., 56:227–246, 1991.
- Zhao W. and R. J. Qualls. A multiple-layer canopy scattering model to simulate shortwave radiation distribution within a homogeneous plant canopy. *Water Resour. Res.*, 41, 2005. W08409.