Surface urban heat islands in northern West Siberian cities derived from MODIS satellite data sets

Igor Ezau & Victoria Miles

Nansen Environmental and Remote Sensing Center / Bjerknes Centre for Climate Research, Bergen, Norway

Nadym, Photo by M. Varentsov 2020, 7-11 Sep

Overview

- Urban Arctic
- Warmer Arctic
- Urban Heat Island
- Land use land cover impact
- Green belts and vegetation
- Sustainability and risks urban Arctic harbinger of future environment

The Urban North: More than 100 urban settlements

Arctic population >4,000,000

85 % of Arctic population lives in a cities

16.09.2020

Cities in the northern West Siberia NWS

We studied 28 cities in northern West Siberia located between 60°N and 73°N latitude.

Total Population nearly 1.8 million

The largest cities: **Surgut** (population ~332,000), **Nizhnevartovsk** (266,000), **Nefteyugansk** (126,000) **Noyabrsk** (107,000).

Cities – Climate change agents on local scales

Urban areas are warming significantly more rapidly than their natural background

Urban Heat Island

- Modified land use land cover
- Anthropogenic heat release
- Modified surface structure

Example of strong the mean **winter** urban land surface temperature anomaly in Noyabrsk, West Siberia

Data and method:

MODerate Resolution Imaging Spectroradiometer (MODIS)

2000 - 2018

T_{Umax} – *maximum* urban pixel temperature

 $T_r - mean$ rural buffer temperature

MODIS LST

61°10'0"N

61°7'30"N

61°5'0"N

61°2'30"N

72°27'30"E

- 1000 m spatial resolution,
- 8-day composites

MODIS NDVI

- 250 m spatial resolution
- 16-day composites

Normalized Difference Vegetation Index (NDVI)

Urban polygon and 2 km boundary buffer

72°42'30"

61°7'30"N

61°5'0"N

72°32'30"E

Urban Heat Island UHI ($_{\Delta}$ T)

Umax

72°37'30"E

SUE-UHI: Global MODIS SUHI dataset by Chakraborty et al. (2019)

BF-UHI – buffer-zone method SUE-UHI – inter-urban difference method

Other drawbacks of the available global datasets:

- No manual check urban areas identified based on nightlight detection
 - E.g., misrepresentation of gas flares as urban areas
- Problematic coverage of smaller urban areas and sub-urbs
 - Misrepresentation of land use land surface type

• **Poor coverage of the Arctic urban areas**

Urban Heat Island in 11 High Arctic Cities

The review of 11 high Arctic Siberian cities

Esau I., Varentsov M., Laruelle M., Miles M.W., Konstantinov P., Soromotin A., Baklanov A. A. and Miles V. V., 2020: Warmer Climate of Arctic Cities, in the monography "The Arctic: Current Issues and Challenges", Pokrovsky O., et al. (Eds), NOVA Publishers, ISBN: 978-1-53617-306-2

In situ Arctic urban climate studies with UHIARC observational network:

• In 6 cities (Apatity, Vorkuta, Nadym, Novy Urengoy, Murmansk, Norilsk)

A review of 4 cities is published in Konstantinov P., Varentsov M., Esau I., 2018, *Environmental Research Letters*, **13**, doi: 10.1088/1748-9326/aacb84

Urban Heat Island in 28 Siberian Cities

Miles V. and I. Esau, 2017, *Remote Sensing*, **9**(10), 989, doi:10.3390/rs9100989

Urban Heat Island in 28 Siberian Cities

Miles & Esau, 2017

Surface UHI: Variations in the Nefteyugansk case study

The 14 years (2001-2014) climatology of the MODIS LST in Nefteyugansk for (a) summer and (b) winter seasons. A black dot -the location of the WMO station.

Nefteugansk , Summer & Winter SUHI (ΔT Day, ΔTNight)

Connecting Local and Global Scales: Urban Arctic climate is a harbinger of future Arctic warming

- 40% to 80% of infrastructure in the Arctic cities has been already damaged
- Soil bearing capacity has decreased by 30%

D. Streletsky and N. Shiklomanov (2016) in Earth's Cryosphere

Connecting Local and Global Scales: Climate Analogues

North West Siberian cities already have climate found ~600 km south

08540-3

80°E

90°E

-70°N

-65°N

-60°N

Tazovskiy

Urengoy Novyi Urengoy

Tarko-Sale

kinsky

Yakh Nizshnvartovsk

100 200

80°E

Novabrsk

Pokachy

rgutmedion

Kogalym

Nady

Potential drivers for the surface UHI

- Meteorological drivers:
 - Background temperature
 - Atmospheric stability
 - Continentality of climate
 - Cloudiness
- Land use land cover (LULC) factors exogenous
 - LULC type features: NDVI, albedo, soil moisture etc.
 - LULC type relative abundance and diversity (the Shannon index)
- Socio-economic factors endogenous
 - Urban area extent
 - Urban LULC type features
 - Urban metabolism: Population density, AHF per capita

Exogenous LULC drivers: Example of Pokachy

15.86 -26.54 17.36 17.79 -26.72 -25.9 16.56 16.45 26.57 Spare vegetation city Cropland Artificial Land Water bodies Grassland Bare land Shrubland Wetland Woodland

Example of the Pokachy city polygon and 2-km buffer polygon.

Urban pixels were allocated to the city polygon and surrounding land in a 2km buffer was considered as rural. The buffer polygon combined different land cover (LC) polygons. The land cover was extracted from LC CCI raster and converted to polygons. LC CCI original classes were joined into 9 new classes. The numbers represent mean LST for different LC classes in the buffer. The upper numbers are summer LST and the lower numbers are winter LST.

Exogenous LULC drivers: All 28 Siberian cities

Endogenous drivers: All 28 Siberian cities

	(a) Summer								
	Trs	ΔTs	SHEI	log(P)	Area km²				
ΙφΙ	<u>-0,93</u>	<u>-0,77</u>	<u>0,44</u>	<u>-0,63</u>	<u>-0,38</u>				
Trs		<u>0,73</u>	<u>-0,44</u>	<u>0,67</u>	<u>0,40</u>				
ΔTs			-0.25	<u>0,81</u>	<u>0,50</u>				
SEI				-0.36	-0.30				
log(P)					<u>0,61</u>				

	(b) Winter							
	Trw	$\Delta T w$	SHEI	log(P)	Area km²			
ΙφΙ	<u>-0,63</u>	-0,39	<u>0,47</u>	<u>-0,62</u>	-0.36			
Trw		0.15	-0.28	0.35	0.01			
$\Delta T w$			<u>-0,52</u>	<u>0,82</u>	<u>0,64</u>			
SHEI				<u>0,45</u>	-0.32			
log(P)					<u>0,60</u>			

Conclusions

- Northern cities reveal large UHI (SUHI)
 - Related to the heat trapping in stably-stratified PBL
- Temporal and spatial patterns are diverse
- Northern UHIs might have a pronounced socioenvironmental impact
- Driving/scalng factors:
 - Population is the most important
 - City area and density are less influential
 - Counterintuitive Urban green spaces induce warming (not cooling) effects – subject of studies in the Belmont Forum project SERUS (Nansen Center in Norway, George Washington University in USA, Tyumen State University in Russia)

The role of local green space and small-scale relief in cold climate cities: Khanty-Mansiysk

