

Monitoring cumulus clouds using global horizontal irradiance data

S.V. Zuev, N.P. Krasnenko Institute of Monitoring of Climatic and Ecological Systems SB RAS. Russia, 634055, Tomsk, 10/3, Academichesky ave. zuev@imces.ru

Cb formation stages

Cb are sources of dangerous meteorological phenomena (showers, thunderstorms, squalls, etc.) and form from *Cu*. Continuous *Cu* monitoring can predict *Cb* formation.

www.clouds-online.com www.dreamstime.com

Common method for estimation cloud type using *GHI* data

Global Horizontal Irradiance (GHI) is the sum of Direct Normal Irradiance (DNI) (at some Sun altitude h) and Diffuse Irradiance (DI):

$$Q = S \cdot \sin h + D.$$

Procedure for determining the cloud type:

1. Estimation of the average value of the analyzed GHI window.

2. Estimation of the GHI standard deviation of the analyzed window.

Common method for estimation cloud type using *GHI* data

At first, non-stationary *GHI* time series is converted to stationary using any clear sky model Q_0 .

Common method for estimation cloud type using *GHI* data

Then, using a 21-minute moving window (± 10 minutes near the point of analysis), its variation and amplitude characteristics are determined.

And finally, the analyzed point is assigned a cloud type according to the decision criterion. For *Cu*: $\sigma = 100 \div 800 \text{ W/m}^2$

 $Q/Q_0 = 0.4 \div 1.2$

Difficulty of clear sky irradiance modeling

To compute the clear sky model

$$Q_0 = S_0 \cos \Theta_z T_R T_g T_w T_a$$

a large dataset of measurements and reference data (8 parameters in total) are required:

$$\begin{split} T_R T_g &= 1.021 - 0.084 [m(949p \times 10^{-5} + 0.051)]^{0.5}, \\ m &= 35(1224 \cos^2 \theta_z + 1)^{-0.5}, \\ T_w &= 1 - 0.077 (um)^{0.3}, \\ u &= \exp[0.1133 - \ln(\lambda + 1) + 0.0393 T_d], \\ T_a &= x^m \end{split}$$

Stationarity of short GHI samples

Specific features of *Cu*

1. Dense opaque clouds.

- 2. Clear skies between separate clouds.
- 3. The Sun is almost always at one of a stable states:
- completely closed and $Q_{min} = D$,
- completely open and $Q_{max} = S' + D$.

Cu detector V_{21}

The result, under *Cu* form a very heterogeneous GHI time series. When the coefficient of variation (CV) for a 21-min. moving window $V_{21} > 0.33$, near analyzed point ±10 min. cumulus are present.

ENVIROMIS-2020

9

Cu detector V_{21} problems

Similar variation characteristics also form under *St* and *Ns*.

This is due to the high sensitivity of CV to small changes of Q at its low average values.

For the detector V_{21} an additional criterion is required.

http://habr.com http://travelask_ru

Cu detector $V_{21}+V_3$

The Sun is completely closed.

Transitional state of the Sun.

The Sun in completely open.

Another specific feature of Cu is its distinct boundaries. Therefore, the change from one Sun stable state to another takes a short time (usually 1-2 min.). At the same time, sharp changes are formed between Q_{max} and Q_{min} at the GHI time series. This is an additional criterion, the analysis of the CV of a 3-minute window V_3 (±1 min. near the point of analysis), moving within the analyzed 21min. window. If at least for one point $V_3 > 0.33$, then Cu are present.

Comparison of V_{21} and $V_{21}+V_3$ detectors

For compare the detectors, the GHI data of the CM-11 pyranometer (May-August 2018 for $h > 30^{\circ}$) and the All-sky images of the MVK-1653c panoramic camera (IMCES SB RAS) are used.

Comparison of V_{21} and $V_{21}+V_3$ detectors

		Predicted state			
		Си	not <i>Cu</i>		
Real state	Си	True Positive	False Negative		
	not Cu	False Positive	True Negative		

Detecting *Cb* as *Cu* was not considered a mistake.

The results were checked using a binary classifier (predicted / real state): True Positive (TP) - Cu / CuFalse Positive (FP) - Cu / not CuFalse Negative (FN) - not Cu / CuTrue Negative (TN) - not Cu / not Cu

Positive Predictive Value $PPV = \frac{TP}{TP + FP}$

True Positive Rate $TPR = \frac{TP}{TP + FN}$

F-measure
$$F_1 = \frac{2 \cdot PPV \cdot TPR}{PPV + TPR}$$

Comparison results

Month	Version	Total analysis points	TP	FP	FN	PPV	TPR	F_{I}
May	V_{21}	14806	2821	440	316	0,86	0,90	0,88
	$V_{21} + V_3$	14745	2051	191	390	0,91	0,84	0,88
June	V_{21}	13255	1885	723	677	0,72	0,74	0,73
	$V_{21} + V_3$	13201	1556	344	722	0,82	0,68	0,74
July	V_{21}	16913	2628	<mark>44</mark> 8	588	0,85	0,82	0,84
	$V_{21} + V_3$	16853	2621	230	668	0,92	0,80	0,86
August	V_{21}	14784	2562	592	913	0,81	0,74	0,77
	$V_{21} + V_3$	14732	1933	306	1037	0,86	0,65	0,74
Total	V_{21}	59758	9907	2203	2494	(0,81)	(0,80)	(0,81)
(mean)	$V_{21} + V_3$	59531	8188	1071	2817	(0,88)	(0,74)	(0,81)

The result of using the additional criterion:

1. Errors of Cu detection decreased by 50%;

2. The precision has increased by 7% with a decrease of the sensitivity by 6%.

Comparison results

	Version	Total analysis points	Total points FP				
Month			Ci Ac Sc St Ns fib. cuf. cuf. St Ns				
Mor	V_{21}	14806	0 191 244 0 5				
Iviay	$V_{21} + V_3$	14745	0 79 112 0 0				
Juno	V_{21}	13255	125 365 223 0 18				
June	$V_{21} + V_3$	13201	17 233 94 0 0				
Infr	V_{21}	16913	0 145 147 52 104				
July	$V_{21} + V_3$	16853	0 128 178 0 0				
August	V_{21}	14784	24 206 455 0 73				
August	$V_{21} + V_3$	14732	5 167 139 0 0				
Tota1	V_{21}	59758	149 907 895 52 200				
TOtal	$V_{21} + V_3$	59531	22 607 442 0 0				

- 3. Errors of St and Ns have completely disappeared.
- 4. Errors of Ac cuf. decreased by 30%;
- 5. Errors of Sc cuf. decreased by 50%;

To reduce errors of Ac cuf. and Sc cuf. further studies are required.

Conclusion

- The proposed method allows monitoring medium and high *Cu* amount at near real time.
 - To realize the method does not require difficult calculations.
- Possibility to use the existing network of actinometric observations.
 - Possibility of using simple PAR sensors.

Thank you for attention!

This work was supported by the Ministry of Science and Higher Education (Project IX.138.2.5 "Scientific and methodological foundations for develop and use of technologies and information-measuring systems for remote monitoring of the lower atmosphere").

S.V. Zuev, N.P. Krasnenko Institute of Monitoring of Climatic and Ecological Systems SB RAS. Russia, 634055, Tomsk, 10/3, Academichesky ave. zuev@imces.ru