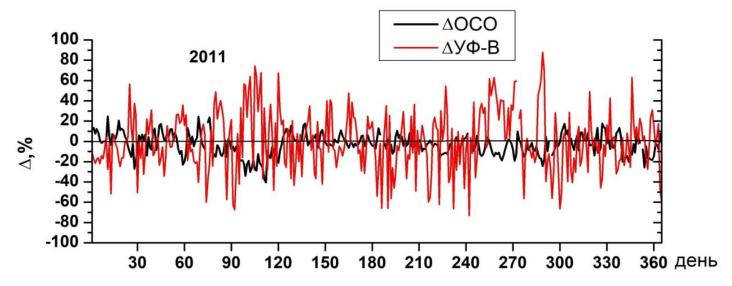


Взаимосвязь вариаций ультрафиолетовой радиации с изменением общего содержания озона, облачности, аэрозольной оптической толщи и альбедо подстилающей поверхности по данным многолетних измерений в Томске

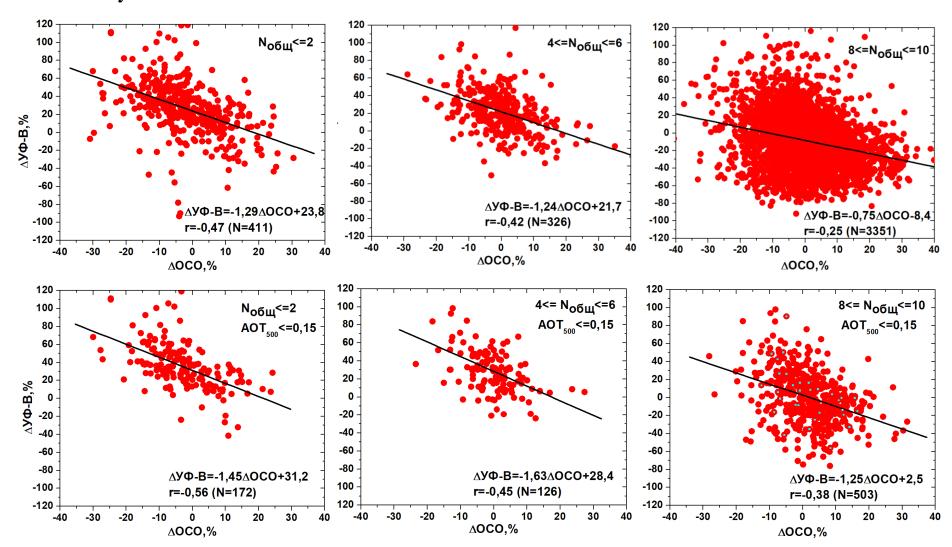
Белан Б.Д., Ивлев Г.А., Скляднева Т.К.


bbd@iao.ru, ivlev@iao.ru, tatyana@iao.ru

Институт Оптики атмосферы им. В.В. Зуева СО РАН, г. Томск

Цель работы: Анализ взаимосвязи вариаций значений приземной ультрафиолетовой радиации с общим содержанием озона (ОСО), облачностью, аэрозольной оптической толщей (АОТ) и альбедо подстилающей поверхности.

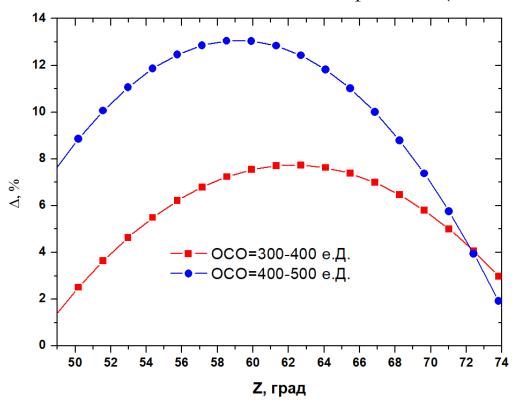
Исходные данные:


- многолетний ряд изменения УФ–В радиации (2003-2016 гг.) на TOR-станции ИОА СО РАН (56 0 28′ с.ш., 85 0 03′ в.д.) в г. Томске. Прибор: ультрафиолетовый пиранометр UVВ-1 (Yankee Environmental Sistems, Inc., США) (λ =280-320 нм, погрешность измерения прибора < 5%).
- данные спутникового мониторинга содержания озона в столбе атмосферы, полученные с использованием прибора AIRS (Atmospheric Infrared Sounder), взяты с сайта http://giovanni.gsfc.nasa.gov.
- данные об аэрозольной оптической толщине (AOT_{500}), полученные на основе наземных измерений прямого излучения фотометром CE-318 сети AERONET в Томске (программа Aerosol Robotic Network AERONET).
- синоптическая база данных за 1993-2016 гг., содержащая ежечасную информацию о количестве общей облачности.


Отклонение УФ-В радиации и ОСО в 2011 гг. от средних многолетних значений.

Результаты

• Выявлены Δ УФ- B_i от Δ ОСО $_i$ для диапазонов с разным баллом общей облачности ($N_{oбim}$ \leq 2, 2 < $N_{oбim}$ \leq 4, 4 < $N_{oбim}$ \leq 6, 6 < $N_{oбim}$ \leq 8, 8 < $N_{oбim}$ \leq 10), как для AOT_{500} \leq 0,15, так и без учёта AOT.



• Установлена количественная связь между УФ-В радиацией и зенитным углом Солнца для разных диапазонов изменения ОСО и двух типов подстилающей поверхности (снег, нет снега).

• Сделаны оценки изменения УФ-В радиации при изменении типа подстилающей поверхности.

Анализ данных по установлению и сходу снежного покрова за годы измерения УФ–В радиации на ТОR–станции ИОА СО РАН, показал, что в Томске устойчивый снежный покров устанавливается в среднем 15 ноября и держится до 15 апреля. Рассмотрены ситуации устойчивого состояния подстилающей поверхности (снег и нет снега).

Приращение УФ–В-радиации при устойчивом снежном покрове. Δ =(УФ–В_{снет}– УФ–В_{нет снега})/ УФ–В_{нет снега}*100, %

Выводы

- Анализ многолетних изменений поступающей в приземный слой атмосферы УФ-В радиации и ее определяющих факторов, который был проведен на однородном ряду измерений УФ-В радиации на ТОR-станции ИОА СО РАН 2003-2016 гг. позволяет сделать следующие выводы:
- При условиях безоблачного и прозрачного состояния атмосферы ($N_{oбщ} \le 2$, $AOT_{500} \le 0,15$) увеличение общего содержания озона на 1% приводит в среднем к уменьшению УФ-В радиации на 1,45%.
- Средний вклад АОТ в изменение суточного поступления УФ-В радиации составляет от 4,3 до 10,9 % в зависимости от балла облачности.
- Облачность может снижать прирост УФ-В радиации на 0,7 28,7% в зависимости от балла облачности.
- Вклад приращения альбедо подстилающей поверхности в увеличение уровня УФ-В радиации составляет в среднем 4-8% для ОСО=300-400 е.Д. и 9-13% для ОСО=400-500 е.Д. при условии устойчивого снежного покрова и диапазоне изменения зенитного угла солнца от 52° до 68° .

Работа выполнена при финансовой поддержке гранта РФФИ №19-05-50024.

Для выполнения гранта использовалась инфраструктура ИОА СО РАН, созданная и эксплуатируемая по госзаданию № АААА-А17-117021310142-5, включая ЦКП «Атмосфера».