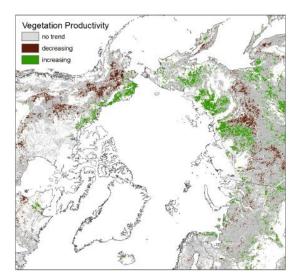
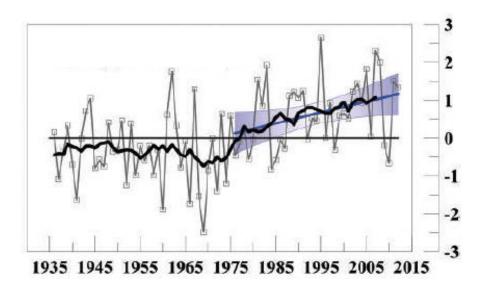


Features of NDVI changes in the West Siberian Plain in the context of climate change

E.M. Korotkova, V.V. Zuev

Institute of Monitoring of Climatic and Ecological Systems, Tomsk, Russia


Enviromis-2020


September 7-11, 2020, Tomsk, Russia

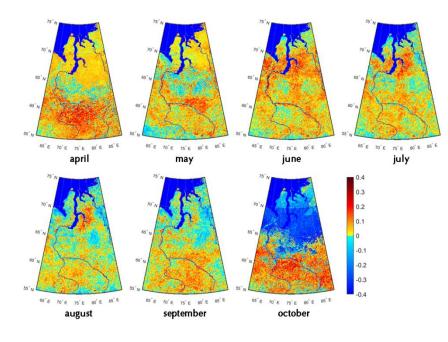
MOTIVATION

Vegetation productivity trends 1982-2008¹

Air temperature anomalies in Western Siberia²

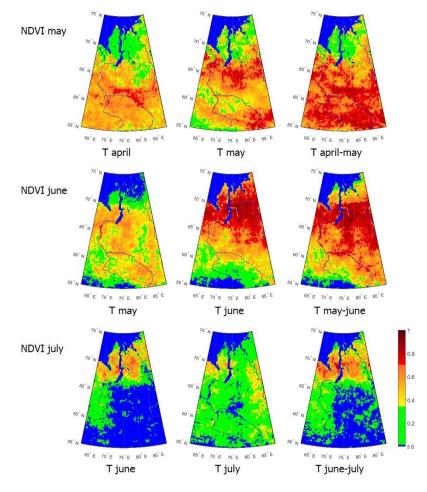
NDVI (Normalized Difference Vegetation Index) – a widely used indicator of the amount of photosynthetically active biomass.

$$NDVI = \frac{NIR - RED}{NIR + RED}$$

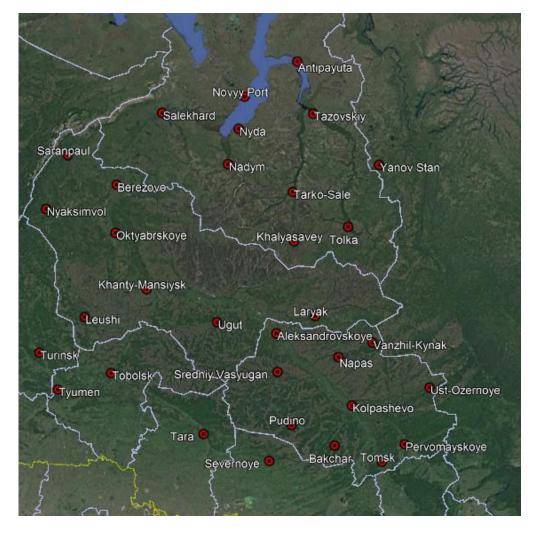

NIR and RED - reflection in the near infrared and red regions of the spectrum

¹Beck, P.S.A., Goetz S.J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences // Environmental Research Letters. 2011. V. 6. 045501.

²The Second Roshydromet Assessment Report on Climate Change and its Consequences in the Russian Federation. Roshydromet, 2014. 1009 p.

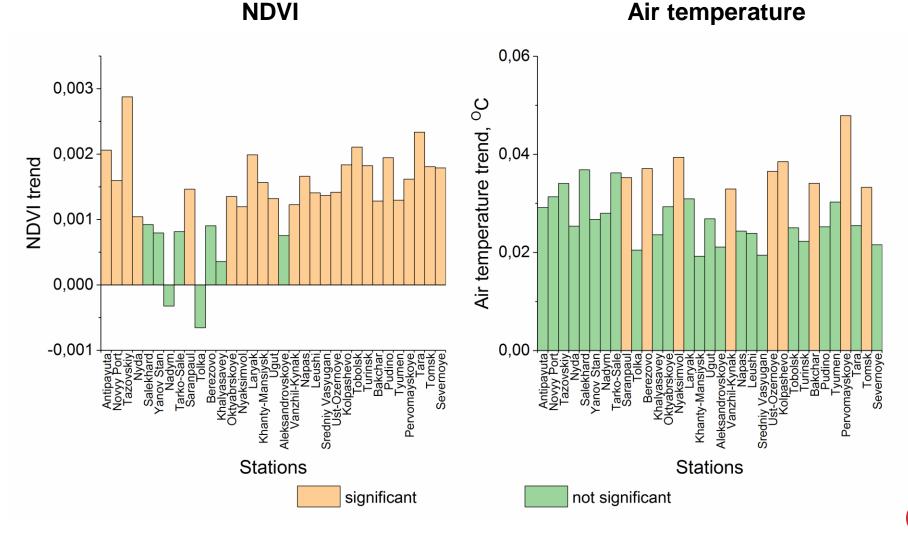

PREVIOUS STUDIES

Trends of NDVI¹

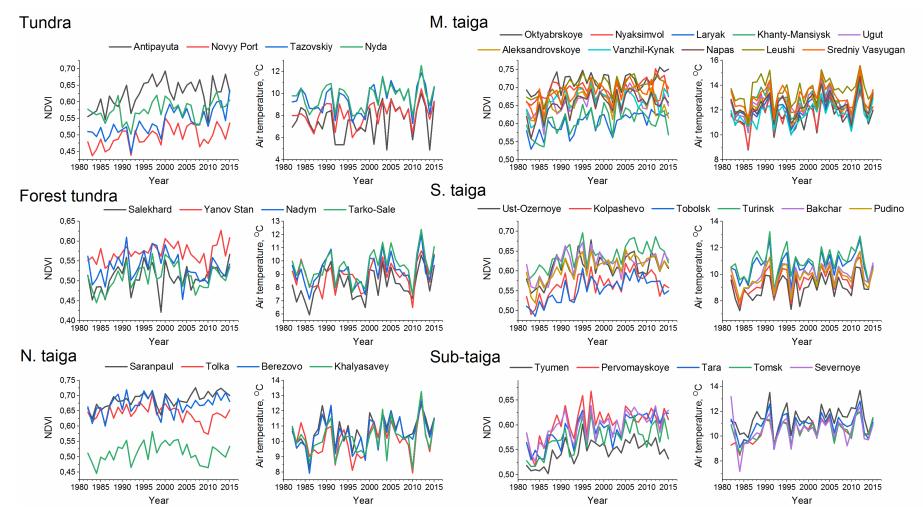

¹*V.V. Zuev, E.M. Korotkova, A.V. Pavlinsky.* Climate-Related Changes in the Vegetation Cover of the Taiga and Tundra of Western Siberia in 1982–2015 According to Satellite Observations // Issledovanie Zemli iz kosmosa. 2019. № 6. P. 66-76.

Correlation coefficients of NDVI and air temperature¹

Weather stations taken for analysis

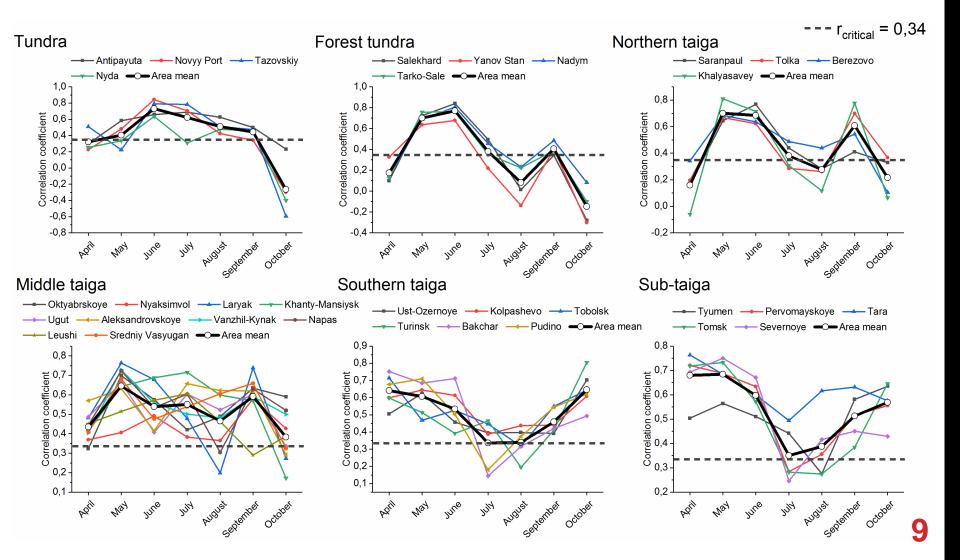

NDVI data – NDVI GIMMS set (AVHRR, NOAA), period: 1982-2015, resolution: 1/12*1/12°. The averaged NDVI value was taken for a square area of 0,5*0,5° for every station on the territory with maximum possible homogeneous vegetation and the minimum possible number of burns and anthropogenic objects.

 Air temperature at weather stations according to Roshydromet data.


NATURAL ZONES AND WARM PERIOD FOR STATIONS

Natural zone	Station	Warm period (season)
Tundra	Antipayuta, Novyy Port, Tazovskiy, Nyda	June-September
Forest tundra	Salekhard, Yanov Stan, Nadym, Tarko-Sale	May-September
Northern taiga	Saranpaul, Tolka, Berezovo, Khalyasavey	May-September
Middle taiga	Oktyabrskoye, Nyaksimvol, Laryak, Khanty- Mansiysk, Ugut, Aleksandrovskoye, Vanzhil- Kynak, Napas, Leushi, Sredniy Vasyugan	May-September
Southern taiga	Ust-Ozernoye, Kolpashevo, Tobolsk, Turinsk, Bakchar, Pudino	April-October
Sub-taiga	Tyumen, Pervomayskoye, Tara, Tomsk, Severnoye	April-October

SEASONAL NDVI AND AIR TEMPERATURE TRENDS BY STATIONS, 1982-2015


NDVI AND AIR TEMPERATURE DYNAMICS AT STATIONS

NDVI AND AIR TEMPERATURE DYNAMICS IN NATURAL ZONES

SEASONAL AND MONTHLY NDVI CORRELATIONS

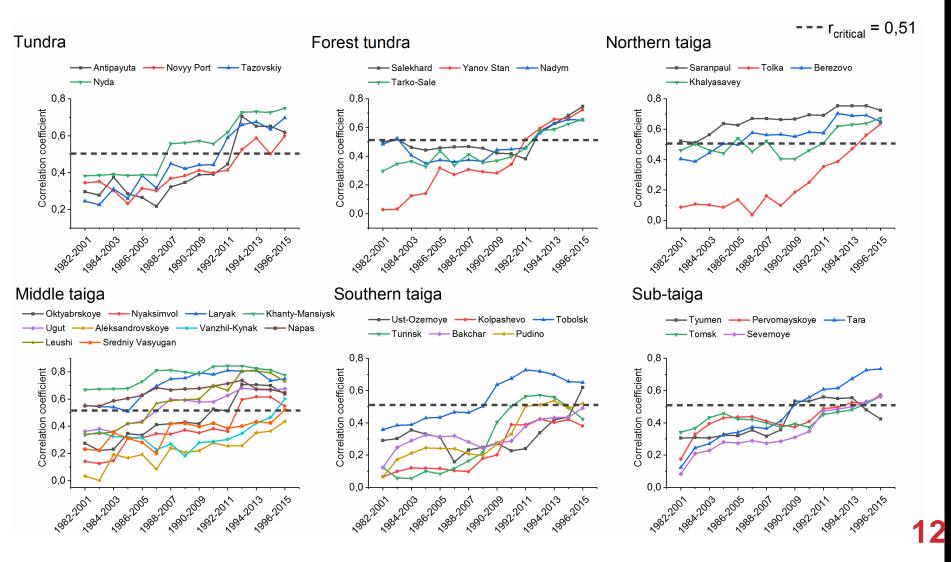
TRENDS OF SERIES OF MOVING CORRELATION COEFFICIENTS. METHOD

1. 20-year moving correlation was calculated for all stations by the following cases:

		Air temperature									
		March	April	May	June	August	September	October	March-April	April-May	May-June
NDVI	April	r	r								
	May		r	r							
	June			r	r						
	September					r	r				
	October						r	r			
	April-May	r	r	r					r	r	
	May-June		r	r	r					r	r

- 2. Linear trend was calculated for all of the resulting series of 20-year moving correlation coefficients
- 3. Maximum value of linear trend was founded for all of these series

MAXIMUM TRENDS OF 20-YEAR MOVING SERIES OF NDVI AND AIR TEMPERATURE CORRELATION COEFFICIENTS


	Station	Months, determining	20-year moving correlation coefficient trends						
Natural zone			NDVI june - T			NDVI sep - T		NDVI oct - T	
		season NDVI dynamics	may	apr	mar	aug	sep	oct	
Tundra	Antipayuta	june, july	0,030						
	Novyy Port	june, july	0,021						
	Tazovskiy	june, july	0,035						
	Nyda	june	0,031			0,012	2		
Forest tundra	Salekhard	may, june	0,013			0,011			
	Yanov Stan	may, june	0,050			0,050			
	Nadym	may, june	0,016			0,025	5		
	Tarko-Sale	may, june	0,023			0,024	ļ		
Jorthern tai	Saranpaul	may, june, september		0,016		0,026	5		
	Tolka	may, june, september	0,038			0,039			
	Berezovo	may, june, september		0,021		0,030			
	Khalyasavey	may, june, september	0,013			0,034			
	Oktyabrskoye	may, september		0,036		0,035			
	Nyaksimvol	june, september		0,034		0,045			
ga	Laryak	may, september		0,021			0,030		
	Khanty-Mansiysk	july		0,012		0,055			
e ta	Ugut	may, september		0,026				0,022	
Middle taiga	Aleksandrovskoye	may, july, september	0,024					0,028	
WI	Vanzhil-Kynak	may, september	0,012					0,030	
	Napas	may, september		0,009			0,049		
	Leushi	july		0,036		0,050			
	Sredniy Vasyugan	june	0,017				0,046		
South taiga	Ust-Ozernoye	may, october	0,012				0,028	8	
	Kolpashevo	april, may, june, october			0,029		0,034	I.	
	Tobolsk	april, october			0,028				
	Turinsk	april, october			0,041				
	Bakchar	april, october			0,018	· · ·			
	Pudino	april, may, october			0,031		0,046	6	
o-ta	Tyumen	april, october			0,019	· · ·			
	Pervomayskoye	april, october			0,018				
	Tara	april, september			0,042				
	Tomsk	april, may, october			0,010				
	Severnoye	april, may, october			0,029	2	0,02		

Significant ($\alpha = 0,05$) values shown in **Bold**

The month determining season NDVI dynamics is the same as the month having maximum trend of 20-year moving correlation coefficient series

0,10-0,24 weak changes 0,25-0,39 moderate changes 0,40-0,55 strong changes

DYNAMICS OF 20-YEAR MOVING CORRELATION COEFFICIENTS OF NDVI AND AIR TEMPERATURE

CONCLUSIONS

- A significant increase in NDVI during the growing season is typical for almost all areas of the West Siberian Plain, except for the highly swampy areas of the forest-tundra and northern taiga;
- The dynamics of the seasonal development of vegetation in Western Siberia is largely determined by its dynamics in the spring and autumn months;
- A constant increase in NDVI in the period 1982-2015 was observed only at stations of the tundra; for stations of other natural zones in the 2000s a stabilization or decline in NDVI is observed.
- The patterns of the NDVI response in different regions of Western Siberia are probably determined by the type of landscape. The identification of characteristic responses of different types of landscape requires further analysis.

THANK YOU FOR YOUR ATTENTION!