Программный инструмент для исследования турбулентности приземного слоя атмосферы по измерениям с АМК-03

Иванов Егор Андреевич (eai17@tpu.ru), Ботыгин Игорь Александрович(bia@tpu.ru)

Представленный в настоящей работе программный комплекс разработан на высокоуровневом языке программирования Python, как 64-битовое Windowsприложение, которое может работать в любой из последних версий Windows, начиная с Windows 7. Ниже представлены основные функциональные модули комплекса.

- Динамическая загрузка метеоданных с сервера измерений АМК-03.
- Преобразование данных из байтового формата в числовой.
- Графическая визуализация и экспорт обрабатываемых данных.
- Вычисление и визуализация корреляционных коэффициентов Пирсона.
- Вычисление базовых параметров турбулентности приземного слоя атмосферы.
- Построение линейной регрессии для взаимосвязанных параметров.

Существует много теоретических соотношений для вычисления характеристик турбулентности атмосферы. В работе использовалась самая простая модель, базирующаяся на теории подобия Монина-Обухова. Ниже приведены формулам для вычисления параметров турбулентности приземного слоя:

- 1) $E_v=(\sigma_u^2+\sigma_v^2+\sigma_w^2)/2$ полная энергия турбулентных движений (где σ_u^2 , σ_v^2 , σ_w^2 дисперсии турбулентных пульсаций трех компонентов скорости ветра u', v', w').
 - 2) $I_v = E_v/V_m^2$ относительная интенсивность флуктуаций скорости ветра.
- 3) $E_t = \sigma_t^2/2$ энергия температурных флуктуаций, (где σ_t^2 дисперсия турбулентных пульсаций температуры T'.
 - 4) $\langle u' * w' \rangle$. момент потока импульса.
 - 5) $\langle T' * w' \rangle$ момент потока тепла.
- 6) $\tau = \rho \langle \mathbf{u}' * \mathbf{w}' \rangle$ вертикальный поток импульса, где $\,
 ho \,$ плотность воздуха.
- 7) $H = c_p * \rho * \langle T' * w' \rangle$ вертикальный поток тепла, где c_p удельная теплоемкость воздуха при постоянном давлении.
 - 8) $v^* = \sqrt{-\langle u' * w' \rangle}$ скорость трения (масштаб ветра).
 - 9) $T^* = -\langle T' * w' \rangle / v^*$ масштаб температуры.

- 10) $C_{\rm d} = (\frac{v^*}{\langle v \rangle})^2$ коэффициент сопротивления потоку.
- 11) $C_T^2 = \langle [T'(t+\Delta t T'(t)]^2 \rangle * (\langle V \rangle \Delta t)^{-2/3}$ структурная постоянная температурных флуктуаций, где V модуль среднего вектора скорости ветра, Δt временной интервал между измерениями мгновенных метеорологических величин.
- 12) $C_V^2 = \langle [u'(t+\Delta t-u'(t)]^2 \rangle * (\langle V \rangle \Delta t)^{-2/3}$ структурная постоянная ветровых флуктуаций.
- 13) $C_{\rm na}^2 = \frac{C_{\rm T}^2}{4\langle {
 m T} \rangle^2} + \frac{C_{\rm V}^2}{\langle c \rangle^2}$ структурная постоянная флуктуаций акустического показателя преломления, где T_k температура воздуха в Кельвинах, с скорость звука.
- 14) $C_{no}^2=\{8*10^{-5}*\langle P\rangle/\langle T\rangle^2\}^2*C_T^2$ структурная постоянная флуктуаций оптического показателя преломления, где P атмосферное давление в гПа.
- 15) $L^* = \langle T \rangle * (v^*)^2/\chi * g * T^*$ масштаб Монина-Обухова, где χ = 0,4 и g = 9,81 м/с².

Для иллюстрации работы разработанного программного комплекса использовались измерения с ультразвукового термоанемометра АМК-03 (измерения 2020 г.), расположенного на полигоне ИМКЭС СО РАН. Интерфейс программного комплекса представлен на рис.1.

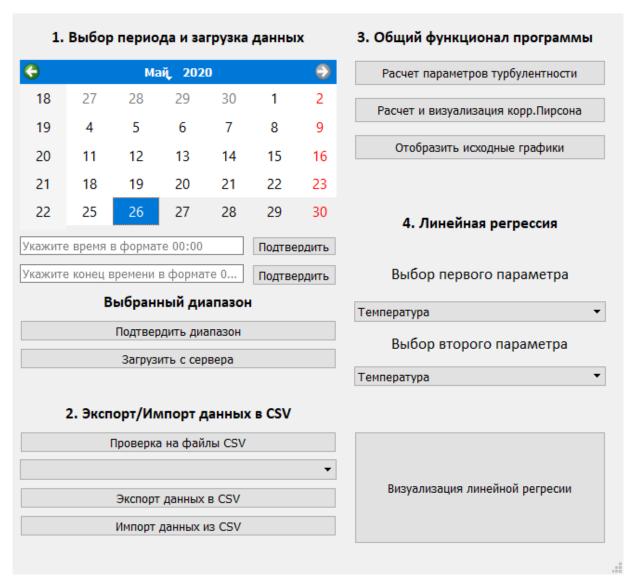


Рис.1. Главная оконная форма комплекса

Скриншот с вычисленными характеристиками приземного слоя атмосферы приведен на рисунке 2.

	Значение	^
Полная энергия турбулентных движений	6.13709	
Относительная интенсивность флуктуаций скорости ветра	0.84857	
Энергия температурных флуктуаций	13.21109	
Момент потока импульса	-0.90233	
Момент потока тепла	2.30121	
Вертикальный поток импульса	1.10536	
Вертикальный поток тепла	2.81899	
Скорость трения (масштаб ветра)	0.94991	
Масштаб температуры	-2.42255	
Масштаб Монина-Обухова	1.10196	~

Рис. 2. Расчетные характеристики турбулентности

Результаты вычисления некоторых характеристик турбулентности со сменой диапазона измерений приведено в таблице 1.

Таблица 1. Масштабирование измерений

Диапазон	17.01.20 12:00 -	18.01.20 12:00 -	19.01.20 12:00 -	20.01.20 12:00 -
	18:00	18:00	18:00	18:00
Модуль ср.	5.920945823664853	2.289455807416715	3.136076776271273	3.602202004075949
вектора			6	
скорости ветра				
Полная энергия	5.78376806703739	3.766140080065457	5.101588854017524	3.876954720585440
турбулентных				7
движений				
Пульсация ветра	-0.90093818673289	-1.72576604521378	1.954124195113059	-2.36964243443264
	89	66		97
Момент потока	-0.65144907673583	-0.13483904486732	-0.16417432379476	-0.10302935918183
импульса	85	912	368	469

Результаты вычисления некоторых характеристик турбулентности со сменой шага измерений приведено в таблице 2. Стартовая дата: 17.01.2020 г. на временном отрезке с 12:00 до 18:00. Интервалы дискретизации: 5 минут, 10 минут, 30 минут, 1 час.

Таблица 2. Дискретизация измерений

Диапазон	5 минут	10 минут	30 минут	1 час
Модуль ср.	731.1468873485421	731.2181161664399	731.1425034317754	731.121511373517
вектора скорости				7
ветра				

Полная энергия	0.856372154582760	0.802551584699446	0.746854915433404	0.69726012145749
турбулентных	4	9	3	13
движений				
Пульсация ветра	0.58906977	-0.77442623	-0.37090909	-0.32025641
Момент потока	-0.24865694970254	-0.33248059661381	-0.33061074380165	-0.33913280736357
импульса	51	435	134	293
,				

Предоставляется возможность выбора отображения полученных значений (рис. 3).

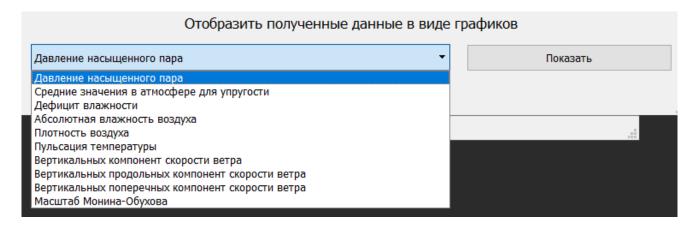


Рис. 3. Настройка визуализации полученных данных

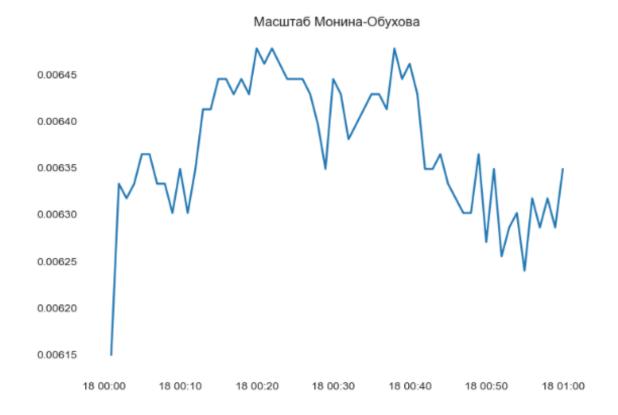


Рис. 4. Визуализация полученных значений за час.

Как сервис в программном комплексе реализована функция, позволяющая работать с ранее загруженными и обработанными данными. При запуске программы, открывается диалоговое окно, в котором необходимо установить требуемый временной интервал. Затем необходимо подтвердить установленный диапазон и загрузить данные. После сообщения об успешной загрузке данных предоставляется набор инструментов для их функциональной обработки. В противном случае необходимо вернуться к выставлению нового запроса данных.

Заключение

Разработан инструментарий для экспериментальных исследований мелкомасштабной турбулентной структуры приземного слоя атмосферы. Программное обеспечение позволяет уточнить и детализировать атмосферные процессы, степень изменчивости, выявить признаки изменения погоды и предпосылки возникновения опасностей по данным, полученным с помощью ультразвукового термометра АМК-03.