ENVIROMIS-2020, Tomsk, 7-11 September, 2020

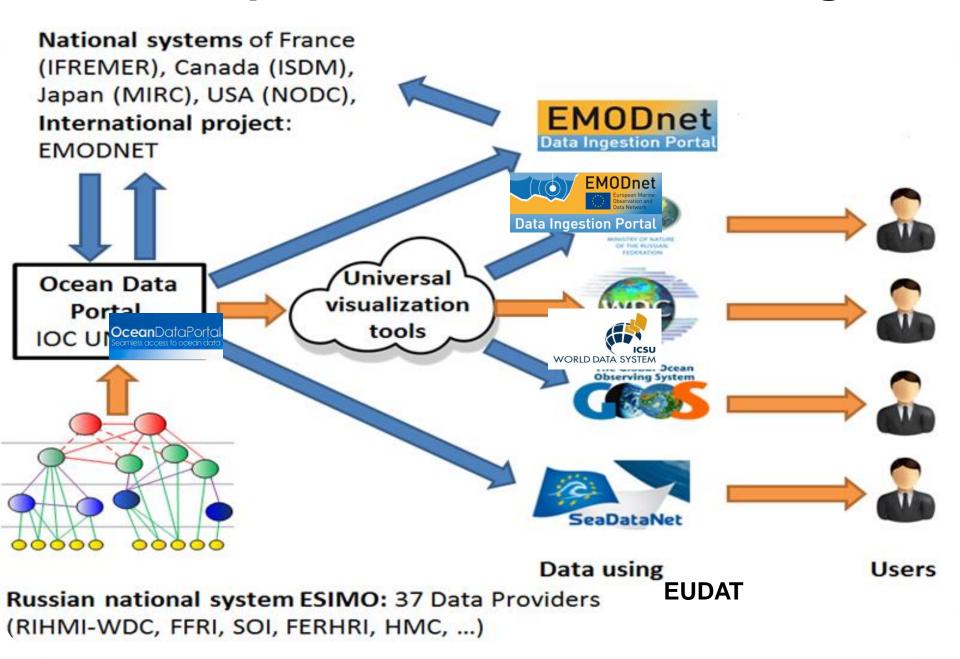
Standardization of forms and tools for inter-machine interaction in the exchange of hydrometeorological data

Evgenii Viazilov, Denis Melnikov, Alexander Mikheev (RIHMI-WDC, e-mail: vjaz@meteo.ru)

Outline

- Introduction
- Data exchange
- FAIR Dataset Requirements and TRUST Principles for Repositories
- Storage and exchange formats
- Product types and data delivery services
- Export (visualizations)

Introduction


From the point of view of users, there are barriers to obtaining data:

- There is great fragmentation in many types of data.
- It takes calendar time to discover data
- Unable to access the data, because no permission to use them
- There are restrictions on the use of the data, "for research purposes only"
- Difficulty combining data from different sources
- There is no information about the origin of the data
- Measurement accuracy, quality and completeness of data are not always known
- The spatial and temporal resolution of the measurement data is insufficient.
- These barriers affect the relevance of the data.
- We need metadata, accessible data.
- Integration of distributed and heterogeneous data is required.
- Requires regular communication between applications on different servers
- There is a need for multi-disciplinary data analysis.

- WDS
- Data exchange within the framework of national and international projects
- GTS data collection
- Using data in applications on different Internet sites
- Data exchange between individual organizations
- Automated delivery of data to departmental information systems
- For examples: EUDAT, SeaDataNet. Gosuslugi, ESIMO

Developable ocean data exchange

FAIR data requirements (go-fair.org)

Findable:

- 1. MD and data are assigned a globally unique and permanent ID
- 2. Data is described using rich metadata
- 3. The MDs clearly and explicitly include the IDs of the data they describe
- 4. The MDs and data are recorded in a searchable resource **Accessible**:
- 1. MD and data can be obtained by their ID using a standardized communication protocol, which is open, free and universal, allows for authentication and authorization
- 2. MD is available even if the data is no longer available **Interoperable**:
- 1. MD and data use vocabularies that also follow FAIR
- 2. MD and data include qualified references to other MD
- 3. MD and data are in accordance with existing standards **Reuse**:
- 1. MD and data are richly described by a variety of attributes
- 2. MD and data are licensed to use
- 3. MD and data are associated with a detailed origin of the data (Lifecycle)

TRUST – principles (WDS)

- 1) Transparency. Be transparent about specific data repository services.
- 2) Responsibility. Be responsible for ensuring the authenticity and integrity of data stores, and for the reliability and consistency of data maintenance.
- **3) User Focus**. Ensure compliance with data governance and users expectations.
- **4) Sustainability**. Maintaining services and preserving data in the long term.
- **5) Technology**. To provide the infrastructure and capabilities to support secure, consistent, and reliable services.

Data sovereignty means that data holders (researchers or organizations) should have the right to decide what data they share, with whom, and on what terms.

Development of FAIR requirements and TRUST principles

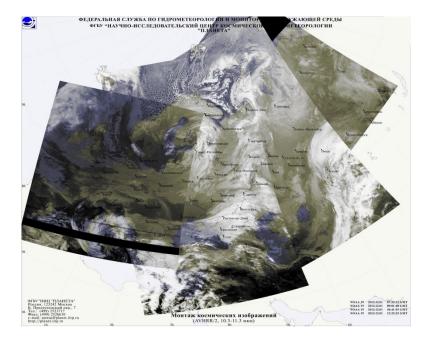
• Distributed heterogeneous data should:

Accompanied by persistent IDs, metadata and documentations for discovery, citation, and reuse documentation, and an indicator of their maturity (an extension of the **Data cite** metadata schema).

- Include data services, metadata specifications, guidelines, recommendations, data management policies and plans.
- Accompanied by means of interaction for data exchange formats, metadata, services and infrastructure.
- Be integrated for analysis.
- Stored in trust accredited data centers.
- Certified for FAIR requirements.
- Be evaluated by metrics and indicators of data state (completeness, relevance, reliability, response time, etc.).

Formats for collection, storage, exchange

- **Formats** for International (WDC), interdepartmental (Gosuslugi, ESIMO) exchange and interaction between applications
- **Collection formats** for presenting measurement results completeness of reflection of object properties. It should provide all observable and related information about methods of obtaining, data sources, measuring systems.
- **Data storage formats** the main requirement is maximum data packing in order to reduce the number of stored media, the presence of metadata attributes in the format.
- **Inverted data formats** storing data that has passed the stage of structural transformations. The requirement is to bring it closer to data processing, simple structure, high access speed.
- Formats for storing data processing results. The formats such as "Time series", "Grid data" are distinguished. The structure should be such that the data from these arrays can be used by most DBMS.


Requirements for data exchange formats

- The format should provide the ability to transfer data using formats based on XML, JSON, NetCdf;
- Any system that recorded the file must subsequently read it and restore all the information;
- Storage media must have technological compatibility at the read-write level.
- The exchanged datasets should be documenting;
- All records must have key attributes;
- The list of parameters must correspond to the composition of observations defined by the current manuals and guidelines;
- The main parameters must have signs of quality;
- When exchanging data, common classifiers and codes are use
- All parameters names must be standardized

		Код Искать	Описание Таблица			NI		
Название ф	Словать о		Название:	Организации (классификатор ГНИНГИ МО РФ)	Attribute	Name	Code	
Страны (классификатор ISO 3166-1 - цифровой)	IBD.D_COUNTRY		Идентификатор кодификатора:	19			Coue	
Страны (классификатор IOC/ICES)	IBD.D_COUNTRY		Словарь:	IBD.D_ORG				
Страны (классификатор ФГБУ "ВНИИГМИ-МЦД")	IBD.D_COUNTRY		Описание:	Источник: ГНИНГИ МО РФ				
Страны (классификатор ГНИНГИ МО РФ)	IBD.D_COUNTRY			Organization Codes of the State	U Id	Identification		
Платформы наблюдений/деятельности: тип (классификатор ФГБУ "ВНИИГМИ-МЦД")	IBD.D_PLATFORM		Название (eng):	Research Institute for Navigation and Hydrography	U_lu	Identification	M4000	
Платформы наблюдений/деятельности: тип (классификатор ГНИНГИ МО РФ)	IBD.D_PLATFORM		Название краткое: Название краткое (eng);	ГНИНГИ SRINH				
Географические районы - Глобальный массив и Мормет (классификатор ФГБУ "ВНИИГМИ-МЦД")	IBD.D_GEO		Количество символов:					
Географические районы (классификатор (IOC/GF3)	IBD.D_GEO		Стандарт:	Отраслевой	O Name	Organization: name		
Моря и океаны (классификатор ІНВ)	IBD.D_GEO		как флаг:	+		organization. namo	M4107	
Географические районы (классификатор ГВК)	IBD.D_GEO		Tun:	Серийный		-		
Географические районы (классификатор ФГБУ "ВНИИГМИ-МЦД" (иерархический)	IBD.D_GEO		Вид: Источник:	Кодификаторы метаданных МО РФ	-			
Географические районы (классификатор ГНИНГИ МО РФ)	IBD.D_GEO				Lat	Latitude	N <i>A</i> O <i>AA</i>	
Географические районы (классификатор ГОИН)	IBD.D_GEO				Lαι		M4311	
Географические районы (классификатор ВНИРО)	IBD.D_GEO							
Платформы наблюдений/деятельности: тип (классификатор WMO)	IBD.D_PLATFORM							
Географические районы (классификатор SDN (BODC)	IBD.D_GEO				T -			
Организации (классификатор ФГБУ "ВНИИГМИ-МЦД")	IBD.D_ORG				Та	Temperature of air:		
Наблюдения (параметры) в формате ФОДЭН-форма описания данных экспедиционных наблюдений (классификатор ФГБУ "ВНИИГМИ-ИЦД")	IBD.D_OBS					remperatore er an.	P0001	
Организации (классификатор ГНИНГИ МО РФ)	IBD.D_ORG	(III)						
Организации (классификатор МПР России)	IBD.D_ORG					measured		

Data types

- Structured (point, profile, grid)
- Spatial data has latitude, longitude and type of spatial representation (point, line, polygon)
- Object this is text-graphic unstructured information documents, drawings, images, photos, video, sound, and others.
- The images catalog should contain information about the date, time, type and name of the observation platform, instruments; etc.

Information on object files

- Catalogue with links to files with documents, maps and figures.
- For all objects, common fields such as ID, date / time of creation, date / time of editing, author, etc. will be highlighted, including fields for organizing links between objects, etc.
- When working with attributes, it is necessary to create generalized formats of fields (number, string, list).
- Descriptions of entities and parameters should be stored separately.

10 •							🖪 🕨 Npoc
0 Даталерена.	Вараметр.ад., код 1	Геобъект.нпд, нпд 1	Вир.анрик.лев., град 1	В Донглероклев, град 1	Вир.ноки.прав., град 1	Вом.ноки.прав., град 1	0 URLdok
914-09-02 12:00:00	R0104010000	11	79.000000	140.000000	69.000000	180.000000	
2114-08-05 12:00:00	R0104010000	11	79.00000	140.000000	69.000000	180.000000	
2014-07-01 12:00:00	R0104010000	11	79.000000	140.000000	69.000000	180.000000	
1014-06-03 12:00:00	R0104010000	11	79.00000	140.000000	69.000000	180.000000	
2114-05-06 12:00:00	R0104010000	11	75.00000	140.00000	69.000000	180.000000	
						180.00000	
814483-64 12:00:00	R0104010000	11	79.00000	140.00000	69.000000	180.000000	-
2014-02-04 12:00:00	R0104010000	11	79.000000	140.000000	69.000000	180.300000	E 🗉
814401407 12:00:00	R0104010000	11	79.400000	140.000000	69.000000	180.000000 ······························	£ 🗉
813-12-03 12:00:00	R0104010000	11	79.00000	140.00000	69.00000	180.00000	^{(E} 🗾
Даталереня.	Параметр.нд., код	Геообъект.илд., илд	Шир.анрик.лев., град	Опт. леркк.лев., град	Вир.ноки.прав., град	Волг.неккларав., град	0 URL.doi

Formats of data

- YaOGMD Language of description of hydrometeorological data
- CDF, NetCdf international data storage and exchange formats
- ODV is an international format for storing and processing ocean data
- JSON a format for exchanging data between applications
- PDS (Planetary Data System) format for transmitting and storing satellite observations
- GRIB (GRid In Binary), BUFR WMO standards for data transmission
- GeoTIFF is an open format for representing raster data along with georeferenced metadata.
- GeoPDF is an advanced PDF format for viewing spatial information in Adobe Reader.
- XML is a means of exchanging data with XML schemas for:
 - RSS news feeds,
 - GeoRSS Geographic Data Exchange
 - vCard, iCalendar, rel-directory, hReview, etc. micro formats
 - Dublin Core internet resources
 - EML (Ecological Metadata Language)
- THREDDS (UCAR, UNIDATA) server provides a catalogue, metadata and services for access to scientific data, the NetCdf exchange formature: we need to add ERDDAP - converter for major formats

<auestion>

</auestion>

Who was the forty-second president of the U.S.A.?

Multidimensional structure for time series

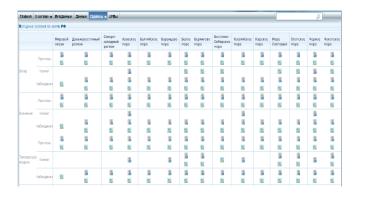
There are many time series with different space-time resolution scales:

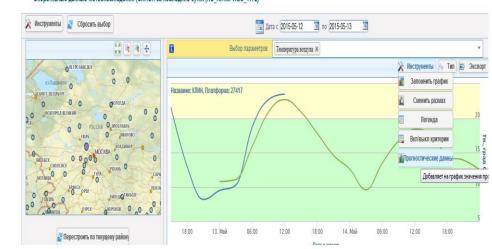
Station name: AAA Geo-region: Ru Spatial: Fix point Time resolution:	Station name: BBB Geo-region: Ru Spatial: Fix point Time resolution:	Enterprise: CCC Geo-region: Chita Spatial: Fix point	City: DDD Geo-region: Ru Spatial: Fix point Time resolution:
hour Date: GGGG, MM, DD, HH	day Date: GGGG, MM, DD, HH	Time resolution: month Date: GGGG, MM, DD, HH	Year Date: GGGG, MM, DD, HH
Parameter: Air temp	Parameter : Pressure	Parameter:. Production release	Parameter: birth- rate

Information on time series

ID_time series	Lat	Long	Begin date	End date	Time resolution	Param eter	Author

Time series

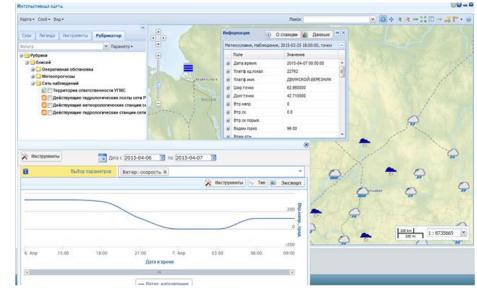

ID_time series Date Value


Product types

- An application (stand-alone) is a type of product that has a permanent link on the web and involves interaction between the user and the visual interface
- Services (web, API, rest, portlets) a type of product characterized by the presence of a permanent link in the network and assuming interaction between two software components.
- OGS standard mapping services (WMS, WFS, WCS) interactive maps
- Combining observed and predicted parameters values on one graph

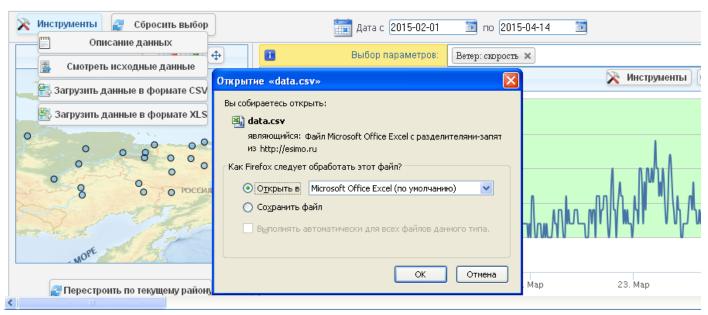
метеонаблюдений (СИНОП за последние сутки

- Indicating parameter values.
- Information product matrices



Data access services

- A web service is a software system identified by a web address with standardized interfaces. Web services can communicate with each other and with third-party applications through protocol-based messages (UDDI, WSDL, SOAP, XML, XML thematic schemas). Receive data only.
 Application programming interface (API) a set of ready-made classes, procedures, functions, structures and constants provided by an application (library, service) for use in external software products. Using the API, you can organize access to the database.
 - **REST services** are not a standardized application.


Portlet is a pluggable, plug-in user interface component of a web page based on the JSR 168: Portlet Specification or WSRP standards for remote

portlets.

Data presentation (export) formats

- HTML files
- Loading ASCII files with separator
- Export CSV, XML, PDF / A
- Loading data in a zip archive
- Saving charts as files (gif, tif).
- Based on the saved graphs, screens, it can create presentations in ppt or pdf format.

Оперативные данные метеонаблюдений (СИНОП) . Восточно-Сибирское море и прилегающая территория России. (RU_F

Conclusion

- FAIR requirements for data, TRUST- principles for data warehouses presented
- For a one-time exchange of hydrometeorological data, the formats HDF, NetCdf are used, and for a permanent regular exchange - language XML, JSON.
- For the first time in hydrometeorology, the idea of standardizing formats for storing and exchanging data in the form of time series, grid data, and object file directories is proposed.
- In addition to standardization of formats, it is necessary to standardize common codes and classifiers used in data exchange, a unified parameter vocabulary.
- The prospects are the development of tools of machine-tomachine interaction with existing international and national systems, conveyor data processing for all processes, starting from data collection and their use in business processes

THANK YOU FOR YOUR ATTENTION !

INTegrated ARctic Observing System (INTAROS) EC HORIZON 2020-BG-09-2016

Agreement between Ministry of Education and Science of Russia and RIHMI-WDC № RFMEFI61618X0103