A new detailed long-term hydrometeorological dataset: first results of extreme characteristics estimations over the Russia Arctic seas

Platonov V.¹, Varentsov M.²

¹Lomonosov Moscow State University, Department of Meteorology and Climatology; ² Lomonosov Moscow State University, Research Computing Center, Laboratory of Supercomputer Modelling of Climate System Processes <u>vplatonov86@gmail.com</u>

Acknowledgements. The reported study was funded by RFBR according to the research project № 18-35-00604

Motivation

- The Arctic is the region most sensitive to climate change on the globe.
- However, there are ambiguous estimates of the climatological trends over the Russian and other Arctic regions.
- Poor observational network and the increasing number of dangerous phenomena in the region requires more detailed hydrometeorological and climatic information.
- There are many data covering Arctic: *satellite* (QuikSCAT, AMSR-E, etc., grid >~20 km), *reanalyses* (e.g., ASR, 15 and 30 km grid). However, this resolution is *not enough* to reproduce mesoscale extreme events and many other important features.
- The most efficient tool to overcome this issue is **regional climate modeling**.
- The <u>task</u> of our study is to create a new high-resolution dataset over the western Arctic to provide the relevant information about Arctic climate, environment and its changes.

Methods

The main tool is the **COSMO-CLM** regional non-hydrostatic atmospheric climate model.

<u>COSMO-CLM</u> (ver. 5) is the <u>climate version</u> of the well-known mesoscale model COSMO developed by DWD and CLM-Community (<u>https://wiki.coast.hzg.de/clmcom</u>).

Main characteristics of the supposed dataset:

- **1980 2016** time period;
- MSU Supercomputer Complex "Lomonosov-2";
- **50** vertical model levels;

- 2 steps of dynamical downscaling (~12 and ~3 km horizontal resolution), 1-hour temporal resolution;
- High-resolution (~3 km) domains over the Barents, Kara and Laptev Seas in future;
 - Many **dozens** of surface and model levels meteorological variables.

Experiments design Downscaling scheme included two steps of nested domains.

Downscaling scheme included two steps of nested domains. The <u>first step</u> is the domain horizontal resolution ~12 km, *forced by global reanalysis* ERA-Interim.

The <u>second step</u> will cover high-resolution domains over **three Arctic seas**: Barents, Kara, Laptev (~3 km).

Brief model description

Runge-Kutta integration scheme with 5th advection order

height-based hybrid Gal-Chen coordinate

Ritter and Geleyn radiation scheme

bulk microphysics parameterization

Tiedtke mass-flux schemes used for moist and shallow convection

turbulence is described by a prognostic TKE-based scheme, with 2.5 order closure

Smagorinsky diffusion;

Based on test experiments and verification results, the following **optimal model configuration** will be chosen:

- 'spectral nudging';
- new model version 5.05 including turbulence scheme correction;
- ERA-Interim reanalysis used as driving conditions

V. Platonov, M. Varentsov. Creation of the long-term high-resolution hydrometeorological archive for Russian Arctic: methodology and first results. *IOP Conference Series: Earth and Environmental Science*, 386(012), 2019. <u>http://dx.doi.org/10.1088/1755-1315/386/1/012039</u>

Additional soil data assimilation

Model was *reinitialized monthly* to control the <u>«long-term memory»</u> of climate system better.

U, V, T, TQV, TQC, TQI, TQG, TQR, TQS, T_S, T_SO[1,2], T_ICE, H_ICE, C_T_LK, DEPTH_LK, H_B1_LK, H_ML_LK, T_B1_LK, T_BOT_LK, T_MNW_LK, T_WML_LK, PP variables were used from the reanalysis laf-file in the model's last output lffd-file.

laf\${YEAR}\${MONTH}0100.nc

Results. Dataset and ERA-I comparison. Wind speed.

(m/s) for 1980 – 1990.

Results. Dataset and ERA-I comparison. Wind speed.

ERA-Interim (left) and COSMO-CLM dataset (right) – average 10 m wind speed (m/s) for 2010 – 2016.

ERA-Interim (left) and COSMO-CLM dataset (right) – frequency (%) of 10 m wind speed above 20.8 m/s for 1980 – 1990.

ERA-Interim (left) and COSMO-CLM dataset (right) – frequency (%) of 10 m wind speed above 20.8 m/s for 2010 – 2016.

Dataset characteristics

1980 – 2016 years period (currently <u>1980 – 2008, 2010 – 2016</u>) with prospective extension to 2019;
Domain with ~13 km grid, and prospective nested domains with ~3 km grid for the Barents, Kara and Laptev Seas;
<u>Computational resources</u>: ~ 62 000 nodes-hours, more than 120 Tb total dataset volume (at finish).

V. Platonov and M. Varentsov. Creation of the long-term high-resolution hydrometeorological archive for Russian Arctic: methodology and first results. *IOP Conference Series: Earth and Environmental Science*, 386(012), 2019. <u>http://dx.doi.org/10.1088/1755-1315/386/1/012039</u>

V. Platonov and M. Varentsov. A new detailed long-term hydrometeorological dataset: first results of extreme characteristics estimations over the Russia Arctic seas. Will be submitted to IOP Conference Series: Earth and Environmental Science in 2020.

Conclusions

- ✓ First version of <u>COSMO-CLM long-term hydrometeorological dataset</u> was created for the Russian Arctic area, including dozens of variables with ~12 km grid.
- ✓ An additional <u>assimilation scheme of soil properties</u> from reanalysis was successfully applied using monthly reinitialization of the model.
- Preliminary assessments of the <u>wind speed climatology</u> based on COSMO-CLM dataset is very close to the ERA-Interim distribution, besides many details at different Arctic regions.
- ✓ High wind speed frequencies based on COSMO-CLM dataset are increased compared to ERA-Interim, especially over the Barents Sea, Arctic islands (Novaya Zemlya) and some seacoasts and mainland areas.
- Comparison of two analyzed periods (<u>1980 1990</u> and <u>2010 2016</u>) has shown that spatial distributions of high wind speed frequencies are very similar, but <u>there are some detailed differences</u>, which could be attributed as manifestations of climate changes in Arctic region.
 - The problem of a <u>huge data volume</u>, its <u>storage</u> and <u>online sharing</u> to scientific community will be hopefully solved in the near future...

Future perspectives and potential dataset applications

Dataset comparison with other archives and reanalyses (ERA5, ASR, QuikSCAT), dataset quality estimation;

Extreme and severe events frequency and physical mechanisms investigation over Arctic area (e.g., Novaya Zemlya Bora; extreme temperatures; polar lows);

- Estimation of surface heat fluxes in Arctic area;
- Forcing data for ocean modelling (waves, circulation);
- Detailed regional Arctic climate changes assessment;
- Arctic climatic resources
- ✤ Etc. ...

Collaboration is encouraged!

Variables description

Variable name	Variable description	Variable name	Variable description
U	U-component of wind	T_ICE	temperature of ice upper surface
V	V-component of wind	H_ICE	sea ice thickness
т	temperature	C_T_LK	shape factor of temperature profile in lake thermocline
TQV	precipitable water	DEPTH_LK	lake depth
ΤΟΟ	vertical integrated cloud water	H_B1_LK	thickness of the upper layer of bottom sediments
ΤΟΙ	vertical integrated cloud ice	H_ML_LK	thickness of mixed layer
TQG	total graupel content vertically integrated	T_B1_LK	temperature at bottom of upper layer of sediments
TQR	total rain water content vertically integrated	T_BOT_LK	temperature at water bottom sediment interface
TQS	total snow content vertically integrated	T_MNW_LK	mean temperature of water column
T_S	soil surface temperature	PP	deviation from reference pressure
T SO [1,2]	soil temperature (1 st and 2 nd soil lavers)		

