

# Variability of characteristics and conditions leading to the formation of extreme precipitation events in the south of Western Siberia

<sup>1</sup>Volkova M.A., <sup>2</sup>Cheredko N.N.

<sup>1</sup>Tomsk State University, Lenina ave., 36, 634050, Tomsk, Russia, <u>mv2101@mail.ru</u> <sup>2</sup>Institute of Monitoring of Climatic and Ecological Systems SB RAS Akademichesky ave. 10/3, Tomsk, 634055, Russia, <u>atnik3@rambler.ru</u>



Against the background of the socio-technical development of territories there is a growth of the damages in economic and social spheres caused by increasing frequency of hazardous events' occurrence. Global warming is happening now, and the changes in the statistics of extreme events are diagnosed in various regions of the Earth. Humidification conditions relate to the most essential indicator of both global and regional climate. Indicators of humidification regime variability, which also includes hazardous events in the precipitation regime, vary significantly in different regions. In this context, taking into consideration ongoing climate changes, it is relevant to elaborate on a regional approach to assessing the availability of moisture resources and possible risks in connection with extreme events in the rainfall regime.

## DATA:

Territory: Tomsk, Kemerovo, Novosibirsk regions and Altai territory Warm period (April-October)

Precipitation (days with precipitation/no),



2015-2018

127 meteorological stations

(15 – heavy rain and 15 – severe rain)

maximum (10 cases) in 1996

**1976-1997** period of accelerated

**1998-2018** warming slowdown period

"Heavy rain" was observed more often during

"Severe rain" was more often observed during

the period of accelerated global warming with a

the warming slowdown, with a maximum (25

30 cases were considered

global warming

cases) in 2018.

In general, for the 1966-2018, periods without precipitation are twice exceeded the number of periods with precipitation and predominately more extended. The maximum duration of dry periods is generally higher than the duration of wet periods. For the period under consideration, the number of periods without precipitation lasting 6-10 days is much less than the number of long periods with precipitation. There is a decrease in short-term periods (1–5 days in duration) and an increase in longer ones (6–10 days), both for cases with/without precipitation. Trends range from 0.1 to 0.6 periods / 10 years, and in most cases are not statistically significant.

#### The amount of rainfall in 12 hours

### **WAREP** (warning reports)

cases with the hazardous event :

- "heavy rain" which defined as rainfall greater than

35 mm in 12 hours

"severe rain" - significant liquid or mixed
precipitation, namely rain, rain shower, sleet, wet
snow greater than 50 mm in 12 hours
Satellite remote sensing data

# MOD(MYD)21KM, ATML2 https://modis-atmos.gsfc.nasa.gov/



Fig.1 Dynamics of cases with the hazardous event on average for the south-east of Western Siberia



Fig.2 Dynamics of cases "Heavy rain" in the Tomsk region and Altai Territory

Table 1 - Average number of cases and repeatability of days (%) with "**Heavy rain**" and "**Severe rain** " in the south-east of Western Siberia for 1966-2018.

|                    |                 | Heavy rain                        | Severe rain     |                                   |  |
|--------------------|-----------------|-----------------------------------|-----------------|-----------------------------------|--|
| Region             | Number of cases | Repeatability<br>for May-August % | Number of cases | Repeatability<br>for May-August % |  |
| Tomsk region       | 11              | 0,1                               | 2               | 0,03                              |  |
| Kemerovo region    | 11              | 0,1                               | 2               | 0,03                              |  |
| Novosibirsk region | 9               | 0,1                               | 2               | 0,02                              |  |
| Altai Krai         | 9               | 0,1                               | 2               | 0,02                              |  |

Soucro roi

#### Table 3 - Satellite-based sensing data for cases "Severe rain"

| Station         | Date       | Time of a<br>extreme<br>precipitati<br>on events | Time of<br>the<br>satellite<br>pass | Amount<br>of<br>precipitat<br>ion, mm | Cloud type                            | Optical<br>Thickness | Top height,<br>m | Water Patch<br>g/m^2 |
|-----------------|------------|--------------------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------|----------------------|------------------|----------------------|
| Kupino          | 07.06.2015 | 8:11                                             | 8:35                                | 63                                    | MCSs                                  | 150                  | 16450            | 2856                 |
| Molchanovo      | 02.08.2015 | 12:00                                            | 7:45                                | 69                                    | cyclonic cloud<br>system with a trail | 150                  | 12800            | 3793                 |
| Turochak        | 19.07.2016 | 8:55                                             | 7:45                                | 53                                    | MCSs                                  | 150                  | 12100            | 4058                 |
| Shipunovo       | 19.07.2016 | 8:38                                             | 7:45                                | 59                                    | MCSs                                  | 150                  | 12100            | 4058                 |
| Krasnoshchekovo | 22.07.2016 | 12:07                                            | 8:15                                | 57                                    | MCSs                                  | 150                  | 12200            | 4580                 |
| Soloneshnoe     | 22.07.2016 | 12:27                                            | 8:15                                | 59                                    | MCSs                                  | 150                  | 12200            | 4580                 |
| Pudino          | 25.07.2016 | 11:57                                            | 7:10                                | 50                                    | cold front                            | 150                  | 17000            | 5158                 |
| Rubtsovsk       | 06.08.2016 | 1:53                                             | 5:45                                | 67                                    | MCSs                                  | 150                  | 14550            | 3799                 |
| Bakchar         | 25.06.2017 | 7:40                                             | 6:25                                | 50                                    | MCSs                                  | 150                  | 12200            | 3171                 |
| Ust-Kalmanka    | 02.07.2017 | 11:54                                            | 6:30                                | 56                                    | cold front                            | 150                  | 10600            | 3586                 |
| Bagan           | 26.06.2018 | 0:13                                             | 4:50                                | 96                                    | mesovortex                            | 150                  | 10650            | 3283                 |
| Novostroyka     | 27.06.2018 | 17:05                                            | 5:35                                | 92                                    | cold front                            | 150                  | 16900            | 1751                 |
| Khabary         | 14.07.2018 | 13:30                                            | 8:05                                | 72                                    | MCSs                                  | 150                  | 10800            | 3181                 |
| Tisul           | 28.07.2018 | 0:00                                             | 6:40                                | 80                                    | cyclonic cloud<br>system with a trail | 150                  | 10650            | 1724                 |
| Kargasok        | 26.08.2018 | 15:00                                            | 7:45                                | 64                                    | cold front                            | 150                  | 10500            | 4478                 |

# MCSs - mesoscale convective systems

Case: Severe rain Khabary 14.07.2018 72 mm (13:30 UTC) According to RGB composite images, a cloudy mesovortex was observed over the Altai Territory



Water Patch (ATML2)

Top height (ATML2)



Table 2 - Average repeatability (%) of the "Heavy rain" in the south-east of Western Siberia at different time intervals

| Time intervals     | 1976-1997 | 1997-2018 | 1966-2018 |
|--------------------|-----------|-----------|-----------|
| Tomsk region       | 0,2       | 0,2       | 0,1       |
| Kemerovo region    | 0,1       | 0,2       | 0,1       |
| Novosibirsk region | 0,1       | 0,1       | 0,1       |
| Altai Krai         | 0,1       | 0,1       | 0,1       |

Table 4 - Satellite-based sensing data for cases " Heavy rain"

|   | Station      | Date       | Time of a<br>extreme<br>precipita<br>tion<br>events | Time of<br>the<br>satellite<br>pass | Amount<br>of<br>precipita<br>tion, mm | Cloud type | Optical<br>Thickness | Top height ,<br>m | Water Patch ,<br>g/m^2 |
|---|--------------|------------|-----------------------------------------------------|-------------------------------------|---------------------------------------|------------|----------------------|-------------------|------------------------|
|   | Ordynskoe    | 12.08.2015 | 9:34                                                | 6:35                                | 35                                    | MCSs       | 150                  | 15600             | 4047                   |
|   | Talmenka     | 22.09.2015 | 1:08                                                | 4:50                                | 37                                    | cold front | 150                  | 10250             | 3617                   |
|   | Gornyak      | 21.06.2016 | 2:18                                                | 5:35                                | 45                                    | MCSs       | 150                  | 10650             | 4204                   |
| r | Volciha      | 23.07.2016 | 11:47                                               | 7:20                                | 39                                    | MCSs       | 150                  | 14800             | 3154                   |
|   | Kuzedeevo    | 24.07.2016 | 4:40                                                | 6:25                                | 36                                    | MCSs       | 150                  | 12300             | 2101                   |
|   | Ust-Kabyrza  | 08.08.2016 | 6:40                                                | 7:20                                | 41                                    | cold front | 150                  | 12600             | 5140                   |
|   | Baturino     | 26.06.2017 | 2:44                                                | 5:20                                | 44                                    | cold front | 150                  | 17000             | 4434                   |
|   | Iskitim      | 18.07.2017 | 4:20                                                | 4:45                                | 39                                    | MCSs       | 150                  | 10600             | 3142                   |
|   | Severnoye    | 25.07.2017 | 4:13                                                | 4:50                                | 45                                    | mesovortex | 150                  | 10700             | 3861                   |
|   | Ust-Tarka    | 28.07.2017 | 10:25                                               | 7:10                                | 42                                    | mesovortex | 150                  | 10700             | 3309                   |
|   | Shelabolikha | 10.06.2018 | 9:35                                                | 8:15                                | 37                                    | cold front | 150                  | 12050             | 2498                   |
|   | Staritsa     | 26.06.2018 | 5:00                                                | 4:50                                | 38                                    | mesovortex | 150                  | 12150             | 2664                   |
|   | Bakchar      | 01.07.2018 | 7:29                                                | 6:45                                | 37                                    | MCSs       | 150                  | 12150             | 4541                   |
|   | Troitskoe    | 01.07.2018 | 9:38                                                | 6:45                                | 35                                    | MCSs       | 150                  | 16900             | 4659                   |
|   | Novokuznetsk | 01.07.2018 | 10:40                                               | 6:45                                | 43                                    | MCSs       | 150                  | 16900             | 4659                   |

✓ Dangerous phenomena caused by heavy precipitation are unevenly distributed throughout the territory

- ✓At all stations, the repeatability of extreme events in the cage regime does not exceed 0.1% per season
- It has been found that during the period of accelerated global warming the frequency of extreme precipitation remained almost unchanged within the study area.
- ✓ Periods without precipitation are twice exceeded the number of periods with precipitation and predominately more extended. Withal, there is a decrease in short-term periods (1-5 days in duration) and an increase in longer ones (6-10 days), both for cases with/without precipitation.
- The maximum continuous dry periods generally lasts longer than the duration of periods with precipitation and in most of the territory of the region goes up by a rate of 0.8 days per decade
- Extreme events in the precipitation regime in the study area were most often observed during mesoscale convective systems; in all cases of dangerous phenomena, cumulonimbus clouds with a high moisture content were observed.
- The identified criteria can be used to identify potential hazardous phenomena according to satellite sensing data in areas not covered by meteorological stations.