Variability of characteristics and conditions leading to the formation of extreme precipitation events in the south of Western Siberia

¹Volkova M.A., ²Cheredko N.N.

¹Tomsk State University, Lenina ave., 36, 634050, Tomsk, Russia, <u>mv2101@mail.ru</u>

²Institute of Monitoring of Climatic and Ecological Systems SB RAS Akademichesky ave. 10/3, Tomsk, 634055, Russia, atnik3@rambler.ru

INTRODUCTION

- Against the background of the socio-technical development of territories there is a growth of the damages in economic and social spheres caused by increasing frequency of hazardous events' occurrence.
- Global warming is happening now, and the changes in the statistics of extreme events are diagnosed in various regions of the Earth.
- Humidification conditions relate to the most essential indicator of both global and regional climate.
- Indicators of humidification regime variability, which also includes hazardous events in the precipitation regime, vary significantly in different regions.

DATA

Territory: Tomsk, Kemerovo, Novosibirsk regions and Altai territory warm period (April-October)

Precipitation (days with precipitation/no),

68 meteorological stations

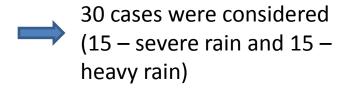
1966-2018

The amount of rainfall in 12 hours

WAREP (warning reports)

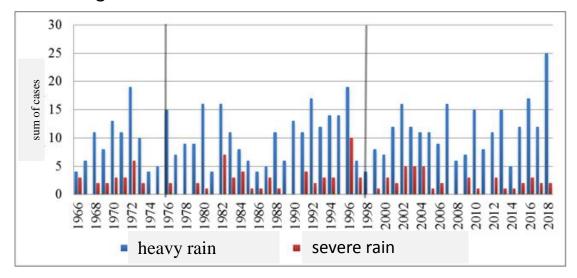
cases with the hazardous event:

- "heavy rain" which defined as rainfall greater than 35 mm in 12 hours
- "severe rain" significant liquid or mixed precipitation, namely rain, rain shower, sleet, wet snow greater than 50 mm in 12 hours

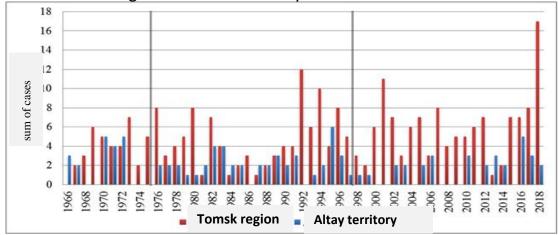

Satellite remote sensing data MOD(MYD)21KM и ATML2

https://modis-atmos.gsfc.nasa.gov/.

127 meteorological stations



2015-2018


Against the background of warming intensifies extreme weather events?

Dynamics of cases with the hazardous event on average for the south-east of Western Siberia

Dynamics of cases "Heavy rain"

in the Tomsk region and Altai Territory

1976-1997 period of accelerated global warming1998-2018 warming slowdown period

"Heavy rain" was observed more often during the warming slowdown, with a maximum (25 cases) in 2018.

"Severe rain" was more often observed during the period of of accelerated global warming with a maximum (10 cases) in 1996

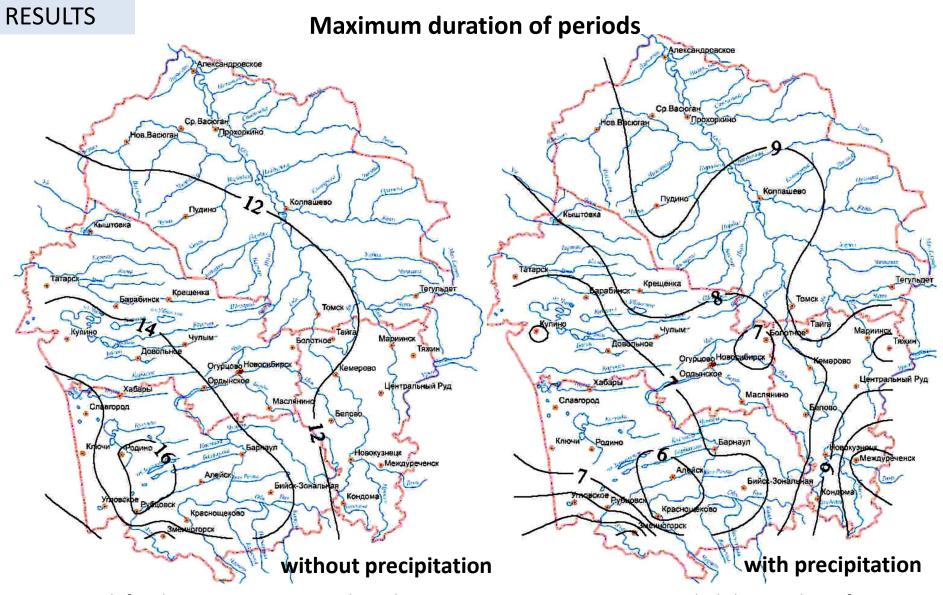
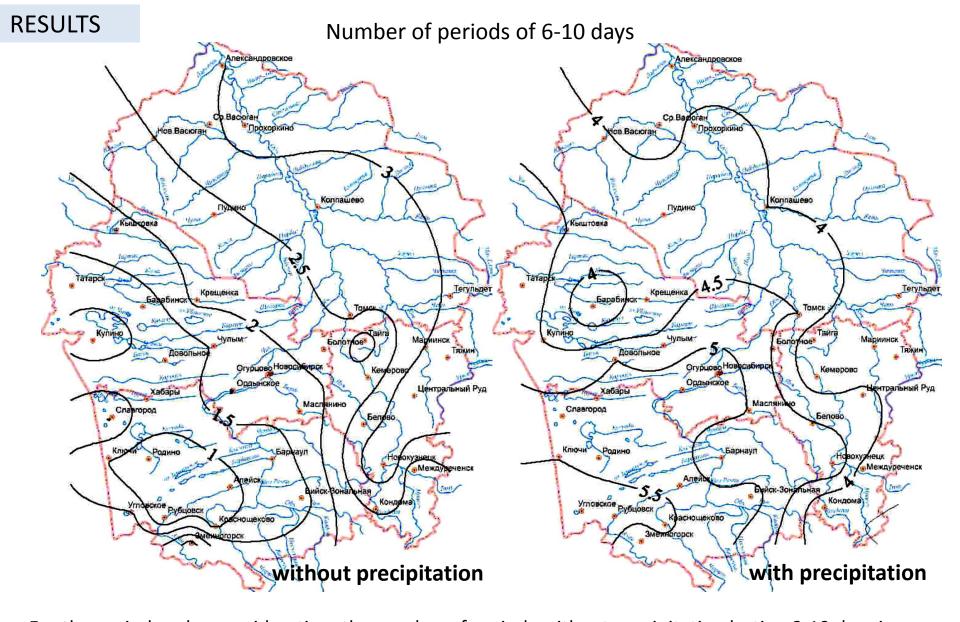

If we consider individual regions and areas within the studied territory, the trends are even less unambiguous

Table 1 - Average number of cases and repeatability of days (%) with "**Heavy rain**" and "**Severe rain**" in the south-east of Western Siberia for 1966-2018.

		Heavy rain	Severe rain		
Region	Number of cases	Repeatability for May-August %	Number of Repeatability cases for May-August		
Tomsk region	11	0,1	2	0,03	
Kemerovo region	11	0,1	2	0,03	
Novosibirsk region	9	0,1	2	0,02	
Altai Krai	9	0,1	2	0,02	


Table 2 - Average repeatability (%) of the "Heavy rain" in the south-east of Western Siberia at different time intervals

time intervals	1976-1997	1997-2018	1966-2018	
Tomsk region	0,2	0,2	0,1	
Kemerovo region	0,1	0,2	0,1	
Novosibirsk region	0,1	0,1	0,1	
Altai Krai	0,1	0,1	0,1	

In general, for the 1966-2018, periods without precipitation are twice exceeded the number of periods with precipitation and predominately more extended.

The maximum duration of dry periods is generally higher than the duration of wet periods.

For the period under consideration, the number of periods without precipitation lasting 6-10 days is much less than the number of long periods with precipitation

- ✓ There is a decrease in short-term periods (1–5 days in duration) and an increase in longer ones (6–10 days), both for cases with/without precipitation. Trends range from 0.1 to 0.6 periods / 10 years, and in most cases are not statistically significant
- ✓ The series of maximum duration of periods without precipitation /
 with precipitation for a given time period do not have a pronounced
 trend of long-term change, most of the trends are not statistically
 significant

Table 3 - Satellite-based sensing data for cases "Heavy rain"

Station	Date	Time of a extreme precipita tion events	Time of the satellite pass	Amount of precipita tion, mm	Cloud type	Optical Thickness	Top height , m	Water Patch , g/m^2
Ordynskoe	12.08.2015	9:34	6:35	35	MCSs	150	15600	4047
Talmenka	22.09.2015	1:08	4:50	37	cold front	150	10250	3617
Gornyak	21.06.2016	2:18	5:35	45	MCSs	150	10650	4204
Volciha	23.07.2016	11:47	7:20	39	MCSs	150	14800	3154
Kuzedeevo	24.07.2016	4:40	6:25	36	MCSs	150	12300	2101
Ust-Kabyrza	08.08.2016	6:40	7:20	41	cold front	150	12600	5140
Baturino	26.06.2017	2:44	5:20	44	cold front	150	17000	4434
Iskitim	18.07.2017	4:20	4:45	39	MCSs	150	10600	3142
Severnoye	25.07.2017	4:13	4:50	45	mesovortex	150	10700	3861
Ust-Tarka	28.07.2017	10:25	7:10	42	mesovortex	150	10700	3309
Shelabolikha	10.06.2018	9:35	8:15	37	cold front	150	12050	2498
Staritsa	26.06.2018	5:00	4:50	38	mesovortex	150	12150	2664
Bakchar	01.07.2018	7:29	6:45	37	MCSs	150	12150	4541
Troitskoe	01.07.2018	9:38	6:45	35	MCSs	150	16900	4659
Novokuznetsk	01.07.2018	10:40	6:45	43	MCSs	150	16900	4659

MCSs - mesoscale convective systems

Heavy rain in 8 out of 15 cases relate to mesoscale convective systems (MCSs); in four cases, the hazard was associated with the passage of cold fronts, and in three cases – with mesovortices.

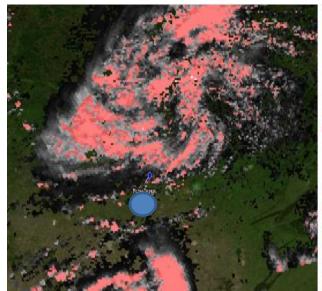
Optical thickness, cloud top height and water content correspond to cumulonimbus clouds with high moisture content

Case: Heavy rain

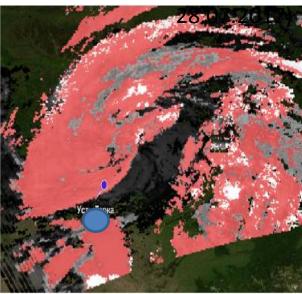
Ust-Tarka 28.07. 2017

42 mm (10:25 UTC)

According to RGB composite images, a mesovortex was observed over the Novosibirsk region.


Water Patch = 3309 g/m²

Optical Thickness = 150


Top height = 10700 m

Fragment of RGB image (Aqua), time of flight – 7:10 UTC

Water Patch (ATML2)

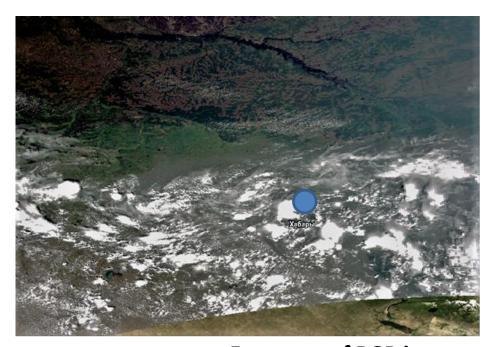
Top height (ATML2)

Table 4 - Satellite-based sensing data for cases "Severe rain"

Station	Date	Time of a extreme precipitati on events	Time of the satellite pass	Amount of precipita tion, mm	Cloud type	Optical Thickness	Top height , m	Water Patch , g/m^2
Kupino	07.06.2015	8:11	8:35	63	MCSs	150	16450	2856
Molchanovo	02.08.2015	12:00	7:45	69	cyclonic cloud system with a trail	150	12800	3793
Turochak	19.07.2016	8:55	7:45	53	MCSs	150	12100	4058
Shipunovo	19.07.2016	8:38	7:45	59	MCSs	150	12100	4058
Krasnoshchekovo	22.07.2016	12:07	8:15	57	MCSs	150	12200	4580
Soloneshnoe	22.07.2016	12:27	8:15	59	MCSs	150	12200	4580
Pudino	25.07.2016	11:57	7:10	50	cold front	150	17000	5158
Rubtsovsk	06.08.2016	1:53	5:45	67	MCSs	150	14550	3799
Bakchar	25.06.2017	7:40	6:25	50	MCSs	150	12200	3171
Ust-Kalmanka	02.07.2017	11:54	6:30	56	cold front	150	10600	3586
Bagan	26.06.2018	0:13	4:50	96	mesovortex	150	10650	3283
Novostroyka	27.06.2018	17:05	5:35	92	cold front	150	16900	1751
Khabary	14.07.2018	13:30	8:05	72	MCSs	150	10800	3181
Tisul	28.07.2018	0:00	6:40	80	cyclonic cloud system with a trail	150	10650	1724
Kargasok	26.08.2018	15:00	7:45	64	cold front	150	10500	4478

Severe rain mostly observed during MCSs (8) and cold fronts passing (4); in two cases, precipitation was caused by cyclonic cloud system with a trail and one – by **mesovortex clouds/**

Optical thickness, cloud top height and water content correspond to cumulonimbus clouds with high moisture content


Case: Severe rain Khabary 14.07.2018 **72 mm** (13:30 UTC)

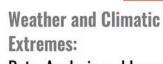
According to RGB composite images , a cloudy mesovortex was observed over the Altai Territory

Water Patch = 3181 g/m²

Optical Thickness = 150

Top height = 10800 m

Fragment of RGB image (Aqua), time of flight – 8:05 UTC


Water Patch (ATML2)

Top height (ATML2)

Conclusions

- Dangerous phenomena caused by heavy precipitation are unevenly distributed throughout the territory
- ✓ At all stations, the repeatability of extreme events in the cage regime does not exceed
 0.1% per season
- ✓ It has been found that during the period of accelerated global warming the frequency of extreme precipitation remained almost unchanged within the study area.
- ✓ Periods without precipitation are twice exceeded the number of periods with precipitation and predominately more extended. Withal, there is a decrease in shortterm periods (1–5 days in duration) and an increase in longer ones (6–10 days), both for cases with/without precipitation.
- ✓ The maximum continuous dry periods generally lasts longer than the duration of periods with precipitation and in most of the territory of the region goes up by a rate of 0.8 days per decade
- ✓ Extreme events in the precipitation regime in the study area were most often observed during mesoscale convective systems; in all cases of dangerous phenomena, cumulonimbus clouds with a high moisture content were observed.
- ✓ The identified criteria can be used to identify potential hazardous phenomena according to satellite sensing data in areas not covered by meteorological stations.

Thank you for attention

Data, Analysis and Impact

September 8 • 10

